## Nitrogen Removal Mechanisms and Pathways in Facultative Waste Stabilization Ponds in the United Kingdom

Eleanor Relton Claire van der Linde

Submitted in accordance with the requirements for the degree of **Doctor of Philosophy** 

The University of Leeds School of Civil Engineering

April 2009

The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

#### Acknowledgements

There are so many people to whom I am indebted and wish to thank, and without whom I know I wouldn't have been able to complete this work.

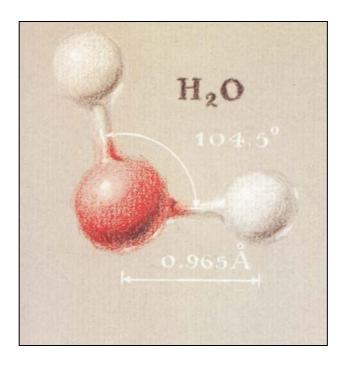
My immense gratitude is given to my supervisor Professor Duncan Mara for the amazing opportunity he gave me, and for enabling me to realise and fulfil a dream. Thank you for unconditional and unwavering support, help in very tough times, and constant encouragement to the end. You have given me this thesis and this chance, and I am very grateful.

My sincere thanks go to many other friends and staff members within the School of Civil Engineering, namely Dr. Cath Noakes, Dr. Louise Fletcher, Professor Ed Stentiford, Mrs. Marcia Martell, Dr. Pete Hobbis, Mr. Mick Marsden, Mr. Richard Bell, Mr. Pete Flatt, Mr. Matthew Buckley, and Mr. Roy Trembath. Dr. Karen Abis is especially thanked for hours spent with me, teaching me how to run 'her' pilot-scale primary facultative ponds within the works, in Bradford, and for relaying all her experience and advice to me about the ponds, which was to prove invaluable. Many others are thanked for their encouragement, friendship, fun, and sound advice. Much gratitude is given to Dr. Andy Sleigh, for being my second supervisor. I wish also to thank Mr. Keith Pierre and Mrs. Karen Stevens, for all their help in the Public Health Engineering Laboratory, Karen especially, who has helped with elements of laboratory analysis. Especial thanks are given to Mr. Steve Holmes, for being an amazing friend, a great help with many aspects of site work and in the laboratory, and a constant source of laughs over the years which have really kept me going, and who could always make me smile on the bad days.

The successful operation of the site at Esholt would have been almost impossible without the kindness and friendship of the Yorkshire Water staff based at the works. I am tremendously grateful to Mr. Richard Thomson, Mr. Chris Douglas and Mr. Trevor Howcutt who have been superstars, helping with everything from fixing things when they have gone wrong, to desludging the ponds when necessary, on numerous occasions. They have truly made working with sewage, fun, and a joy! Thanks and appreciation also must be given to Mr. Steve Grant,

and last but not least, Mr. Paul Blackburn, for giving me all the help I ever needed, and allowing me to come and go from Esholt as I pleased.

I am exceptionally grateful to Professor Simon Bottrell, Dr. Rob Newton, Dr. Becky Bartlett, Miss Helen Cope, and Mr. Dave Hatfield of the School of Earth Sciences, University of Leeds, for all of their help with the stable isotope work. Singular thanks must be given to Dr. Rob Newton, who let me use the mass spectrometer, spent hours teaching me how to use it, and who was always there to help me with my many samples, offer sound advice, check my calculations, and answer my many questions.

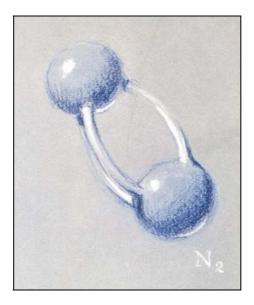

Many thanks also are given to Dr. Russell Davenport, and Mrs. Fiona Read of the School of Civil Engineering and Geosciences, University of Newcastle, for all of their help, especially with the analysis they undertook on samples for molecular microbiology.

Thanks must also be extended to Mr. David Ashley and Miss Rachel Gasior of the School of Geography, University of Leeds, for accommodating me in their laboratory, and helping me with the exacting analysis of a huge batch of Dionex samples.

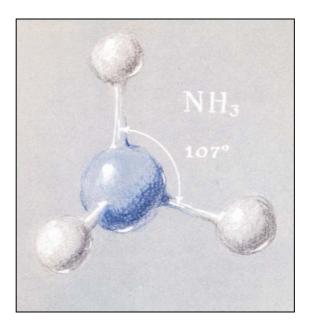
My fellow PhD colleagues, but most importantly, my friends, have helped me through so much and have been an unbelievable support. My heartfelt gratitude goes to my office buddies Miller Camargo Valero, Abigail Hathway, Katherine Roberts, Daxu Xang, Jawed Qureshi, Helen Bailey, Shanmugam Palaniyandi and family, and also to Rae Taylor, Kiran Bhagate and Chimwemwe Banda. Especial thanks go to Miller, an amazing researcher and teacher, who has helped me with many aspects of this study over the last few years, and from whom I have consistently learnt much.

I am very grateful to the Engineering and Physical Sciences Research Council for all of my funding: there is no way I would have been able to undertake any of this work without it. Finally, my love and thanks go to my wonderful parents and family, both in England and in South Africa for their continual support, help, and encouragement in every way, which is immeasurable. To my siblings, Catherine and Benedict, for your unbelievable love, fun and encouragement. Thank you Tannie Liz and Uncle Werner for all of your uplifting emails from South Africa. To my little helpers too, my beloved guinea pigs, Mr. Beethoven, and Baby for all of the love and joy they bring me, not to mention the therapeutic relaxation and their calming presence. Also, my debt of gratitude is unbounded to my many amazing friends, for the support and the allowances they have made for me – especially to Dr. Lindsay Moran, my long-suffering housemate of the last few years. I know deep down I am SO blessed to have you all.

#### "... Ad majorem Dei gloriam ... "




The Water Molecule – taken from Pauling and Hayward, 1964.


#### Abstract

The removal of total nitrogen was measured from two pilot-scale primary facultative wastewater stabilization ponds based at Yorkshire Water's Esholt wastewater treatment works in Bradford, UK. Three novel tracer studies, using a stable isotopically labelled spike of ammonium chloride as <sup>15</sup>NH<sub>4</sub>Cl, were conducted on both of the ponds, to pinpoint the exact mechanisms and pathways of nitrogen removal, or transformation, within the systems. Each <sup>15</sup>NH<sub>4</sub>Cl spike also incorporated rhodamine WT as a dye tracer to determine the hydraulic characteristics and performance of the ponds. The primary facultative ponds (PFP's) were loaded at the optimum BOD loading of 80 kg/ha d for PFP's in a UK climate. A theoretical hydraulic retention time was set, and maintained by blending the influent wastewater with a freshwater flow, to produce a nominal hydraulic retention ( $\theta_0$ ) time of 30 d. Each experimental period was run for a duration of  $3\theta_0$ . The concentrations of labelled nitrogen bound as suspended and soluble organic-nitrogen, ammonium-nitrogen, and nitrate-nitrogen were obtained from the analysis of, and partitioning of, daily composite effluent samples. The volatilization of ammonia was also measured, as was sludge accumulation, throughout the duration of each experiment, and appropriate <sup>15</sup>N fractions also Stable isotope analysis was conducted using a helium continuous determined. flow isotope ratio mass spectrometer. The molecular microbiological component in this work was undertaken in conjunction with the University of Newcastle, to determine the bacterial speciation of the ponds, with particular emphasis placed on nitrifiers and denitrifiers.

The results revealed that the volatilization of ammonia contributed negligibly to The passage of <sup>15</sup>Noverall permanent nitrogen removal from the ponds. ammonium throughout the system was found to approximate the hydraulic flow characteristics of the pond. A large degree of hydraulic short-circuiting was observed in winter operating conditions. Analysis revealed that the predominant form of <sup>15</sup>N exiting the pond in summer months was bound in the suspended organic-nitrogen fraction. Both sets of winter results revealed that the largest form of <sup>15</sup>N leaving the pond was in the unchanged ammonium <sup>15</sup>N fraction. Molecular microbiological analysis, incorporating PCR amplification and DGGE tools, revealed that in many wastewater samples, gathered from all parts of the pond, there was a high presence of bacteria involved specifically with the cycling of nitrogen. Anammox bacteria were only detectable in summer samples, but a wide range of ammonia-oxidising bacteria, archea, and denitrifiers were detected in both winter and summer. Methanotrophs were also found throughout the pond Although in situ oxidation and reduction rates were not in both periods. quantified, the presence of these important nitrogen-utilising microorganisms, confirms that simultaneous nitrification and denitrification processes contribute to the transformation of nitrogen via oxidative and reductive processes. The strong presence, and widespread abundance, of denitrifiers throughout the system, revealed that denitrification may play a fundamentally important role in the permanent removal of nitrogen from primary facultative WSP's.



This thesis is dedicated to my amazing parents, John and Felicity van der Linde, who have sacrificed, given, and been through much, to help me to get to where I am. I honour you for that. This work is for you with all of my love, joy, gratitude and appreciation – God bless you.



Dinitrogen and the Ammonia Molecule – taken from Pauling and Hayward, 1964.

### **Table of Contents**

| Acknowledgements                                                                                                       | ii  |
|------------------------------------------------------------------------------------------------------------------------|-----|
| Abstract                                                                                                               | v   |
| Table of Contents                                                                                                      | vii |
| List of Tables                                                                                                         | xi  |
| List of Figures                                                                                                        | xiv |
| List of Abbreviations and Acronyms                                                                                     | xix |
| Chapter 1 ~ Introduction                                                                                               | 1   |
| 1.1 Introduction and Background                                                                                        | 1   |
| 1.2 Nitrogen in wastewater and the importance of its removal                                                           | 5   |
| 1.3 Nitrogen removal with respect to EU Directives                                                                     | 6   |
| 1.4 Research Objectives                                                                                                | 8   |
| 1.5 Thesis Presentation                                                                                                | 10  |
| Chapter 2 ~ Waste Stabilization Ponds and Nitrogen Chemistry                                                           | 11  |
| 2.1 Introduction                                                                                                       | 11  |
| 2.2 Facultative ponds                                                                                                  | 12  |
| 2.2.1 Characteristics of facultative ponds and principles of their operation                                           | 13  |
| 2.2.2 Facultative pond design criteria                                                                                 | 17  |
| 2.3 Facultative pond microbiology                                                                                      | 21  |
| 2.3.1. Algae                                                                                                           | 22  |
| 2.3.2. Bacteria                                                                                                        |     |
| 2.3.3 Other WSP dwelling organisms                                                                                     |     |
| 2.4 Wastewater characteristics and composition                                                                         |     |
| 2.4.1 Nitrogen fractions within municipal wastewater                                                                   | 35  |
| 2.4.1.1 Organic nitrogen sources                                                                                       | 35  |
| 2.4.1.2 Inorganic nitrogen sources                                                                                     |     |
| 2.5 The nitrogen cycle and its significance within wastewater treatment                                                |     |
| 2.6 Nitrogen removal mechanisms and pathways in wastewater treatment and primary facultative waste stabilization ponds | 40  |
| 2.6.1 Ammonia volatilization                                                                                           | 42  |
| 2.6.2 Algal uptake through assimilation                                                                                |     |
| 2.6.3 Deposition through sedimentation                                                                                 |     |
| 2.6.3.1 Nitrogen fluxes attributable to sludge feedback                                                                |     |
| 2.6.4 Nitrification                                                                                                    |     |

| 2.6.5 Denitrification                                                                                   | 59  |
|---------------------------------------------------------------------------------------------------------|-----|
| 2.6.6 Anammox                                                                                           | 61  |
| 2.7 Stable isotope tracer studies in wastewater treatment                                               |     |
| 2.8 Hydraulic flow patterns and models in WSP                                                           | 64  |
| Chapter 3 ~ Previous Research Conducted with respect to Nitrogen                                        | (0) |
| Removal on the Esholt Primary Facultative WSP                                                           |     |
| 3.1 Introduction                                                                                        |     |
| 3.2 Ammonia nitrogen removal from the primary facultative WSP operating under normal conditions         | 69  |
| 3.3 The effect of hydraulic retention time on ammonia nitrogen removal from the primary facultative WSP | 71  |
| 3.4 Ammonia volatilization                                                                              | 72  |
| 3.5 Nitrification                                                                                       | 73  |
| 3.6 Ammonia removal by β-subdivision ammonia-oxidising bacteria                                         | 74  |
| Chapter 4 ~ Research Materials and Methods                                                              | 76  |
| 4.1 Introduction                                                                                        | 76  |
| 4.2 The experimental WSP systems: site-based methods                                                    | 77  |
| 4.2.1 Modifications to the Esholt WSP systems                                                           | 78  |
| 4.3 Pond operation and maintenance requirements                                                         |     |
| 4.4 Weekly routine monitoring and sample collection strategy                                            |     |
| 4.4.1 Analytical laboratory methods                                                                     | 83  |
| 4.4.2 Sonde data collection                                                                             |     |
| 4.4.3 Water temperature measurements                                                                    |     |
| 4.5 Stable isotope and Rhodamine WT tracer experiments                                                  |     |
| 4.5.1 Site set-up and spike injection                                                                   |     |
| 4.5.2 Autosampler collections                                                                           |     |
| 4.5.3 Laboratory preparation and methodology for <sup>15</sup> N extraction.                            | 89  |
| 4.5.4 Nitrogen Stable Isotope analysis                                                                  | 95  |
| 4.6 Ammonia volatilization                                                                              | 96  |
| 4.7 Sampling for molecular microbiological analyses                                                     | 97  |
| 4.8 Sludge sampling and analysis                                                                        | 98  |
| 4.8.1 Sludge analysis                                                                                   | 98  |
| 4.8.2 Sludge depth profiles                                                                             | 99  |
| Chapter 5 ~ Results                                                                                     | 101 |
| 5.1 Introduction                                                                                        | 101 |
| 5.2 Routine sampling and pond performance                                                               | 101 |
| 5.2.1 Influent and effluent wastewater characteristics                                                  | 103 |

| 5.3 In-pond studies                                                       | 109 |
|---------------------------------------------------------------------------|-----|
| 5.3.1 Weather and temperature data                                        | 109 |
| 5.3.2 Site observations                                                   | 109 |
| 5.3.3 ORP data                                                            | 114 |
| 5.3.4 Dissolved oxygen data                                               | 116 |
| 5.3.5 Chlorophyll <i>a</i> data and profiles                              | 119 |
| 5.3.6 Nitrate profiles                                                    | 124 |
| 5.3.7 Ammonium profiles                                                   | 127 |
| 5.4 Sludge accumulation                                                   | 130 |
| 5.5 Ammonia volatilization                                                | 136 |
| 5.5.1 Winter 2006                                                         | 136 |
| 5.5.2 Summer 2006                                                         | 139 |
| 5.6 Pond hydraulic performance                                            | 142 |
| 5.6.1 Winter 2006                                                         | 143 |
| 5.6.2 Summer 2006                                                         | 146 |
| 5.6.3 Winter 2007                                                         | 149 |
| 5.7 Stable isotope tracer studies and nitrogen mass balances              | 154 |
| 5.7.1 Winter 2006                                                         | 154 |
| 5.7.2 Summer 2006 and winter 2007                                         | 159 |
| 5.8 Molecular microbiology                                                | 167 |
| Chapter 6 ~ Discussion of the Results                                     | 170 |
| 6.1 Research synopsis                                                     | 170 |
| 6.2 PFP performance and removal efficiencies                              | 170 |
| 6.3 The insignificance of ammonia volatilization                          | 171 |
| 6.4 Pond hydraulic performance                                            | 174 |
| 6.5 Stable isotope tracer mass balances                                   | 177 |
| 6.5.1 Winter 2006                                                         | 177 |
| 6.5.2 Summer 2006 and winter 2007                                         | 178 |
| 6.5.3 Comparison between this research and the literature                 | 181 |
| 6.5.4 Summary of nitrogen mechanisms and pathways within the Esholt PFP's | 182 |
| 6.6 Nitrification vs. algal assimilation in winter and summer             | 183 |
| Chapter 7 ~ Conclusions and Recommendations                               | 191 |
| 7.1 Conclusions                                                           | 191 |
| 7.2 Recommendations for further work within the scope of this             |     |
| research                                                                  | 192 |

| REFERENCES                                                                  |  |
|-----------------------------------------------------------------------------|--|
| Appendix A ~ Wastewater flows                                               |  |
| Appendix B ~ Rhodamine WT and <sup>15</sup> NH <sub>4</sub> Cl calculations |  |
| Appendix C ~ Dionex data                                                    |  |
| Appendix D ~ Mass spectrometer data conversion                              |  |
| Appendix E ~ Ammonia volatilization data                                    |  |

### List of Tables

| <b>Table 1.1</b> A summary of Urban Waste Water Treatment Directive                                  |  |
|------------------------------------------------------------------------------------------------------|--|
| Table 1.2: A summary of Directive 2006/44/EC outlining the maximum                                   |  |
| limits of pollutants entering either still or running fresh waters within EU                         |  |
| Member States                                                                                        |  |
| <b>Table 2.1:</b> Classification of microorganisms according to their nutritional                    |  |
| type and energy requirements                                                                         |  |
| Table 2.2: Some of the most common algal genera found in facultative                                 |  |
| WSP                                                                                                  |  |
| Table 2.3: Concentrations of ammonia and sulphide which cause toxic                                  |  |
| effects in algae at various pH                                                                       |  |
| <b>Table 2.4:</b> Bacterial types typically found within facultative WSP                             |  |
| Table 2.5: Indicative guides of BOD5 and COD with respect to the                                     |  |
| classified strength of a wastewater                                                                  |  |
| Table 2.6: Typical concentrations of various nitrogen fractions in raw                               |  |
| wastewater                                                                                           |  |
| <b>Table 4.1:</b> Dimensions for the Green and Blue PFP's                                            |  |
| <b>Table 4.3:</b> Quantities of <sup>15</sup> NH <sub>4</sub> Cl and Rhodamine WT used in each spike |  |
| preparation                                                                                          |  |
| Table 5.1: A summary of the operational periods and characteristics of                               |  |
| both PFP's during the research period                                                                |  |
| Table 5.2: A summary of the influent and effluent wastewater                                         |  |
| characteristics for the Green PFP during the winter 2006 experiment                                  |  |
| Table 5.3: A summary of the influent and effluent wastewater                                         |  |
| characteristics for the Blue PFP during the summer 2006 experiment                                   |  |
| Table 5.4: A summary of the influent and effluent wastewater                                         |  |
| characteristics for the Blue PFP during the winter 2007 experiment                                   |  |
| <b>Table 5.5:</b> Monthly weather characteristics for the City of Bradford                           |  |
| Table 5.6: PFP operating conditions observed for the Green pond during                               |  |
| the winter 2006 experimental run                                                                     |  |
| Table 5.7: PFP operating conditions observed for the Blue pond during the                            |  |
| summer 2006 experimental run                                                                         |  |

| winter 2007 experimental run                                                             | 113 |
|------------------------------------------------------------------------------------------|-----|
| Table 5.9: Net sludge accumulation rates measured by the white towel test                |     |
| over the research period                                                                 | 136 |
| Table 5.10: Data summary table for the three hydraulic tracer studies                    | 153 |
| <b>Table 5.11:</b> A nitrogen mass balance for the Green PFP, winter 2006                | 157 |
| Table 5.12: Recovery of <sup>15</sup> N from organic and inorganic fractions within      |     |
| the Green PFP effluent, winter 2006                                                      | 159 |
| <b>Table 5.13:</b> A nitrogen mass balance for the Blue PFP, summer 2006                 | 165 |
| Table 5.14: Recovery of <sup>15</sup> N from organic and inorganic nitrogen fractions    |     |
| within the Blue PFP effluent, summer 2006                                                | 166 |
| Table 5.15: A nitrogen mass balance for the Blue PFP, winter 2007                        | 166 |
| Table 5.16: Recovery of <sup>15</sup> N from organic and inorganic fractions within      |     |
| the Blue PFP effluent, winter 2007                                                       | 166 |
| Table 5.17: Presence and absence results for various nitrogen utilising                  |     |
| bacterial groups found in samples taken during the summer of 2006                        | 168 |
| Table 5.18: Presence and absence results for various nitrogen utilising                  |     |
| bacterial groups found in samples taken during the winter of 2007                        | 169 |
| <b>Table 6.1:</b> Summary of the maximum $\delta^{15}$ N values, corresponding $^{15}$ N |     |
| concentrations per nitrogen fraction, and the elapsed time at which these                |     |
| peaks occurred in summer and winter                                                      | 180 |
| Table A.1: Loading table for the Green pond with a theoretical hydraulic                 |     |
| retention time of 30 d and a BOD loading of 80 kg/ha d                                   | 208 |
| Table A.2: Loading table for the Blue pond with a theoretical hydraulic                  |     |
| retention time of 30 d, and a BOD loading of 80 kg/ha d                                  | 209 |
| Table A.3: Actual Green PFP influent and effluent flows for the winter                   |     |
| 2006 experimental run                                                                    | 211 |
| Table A.4: Actual Blue PFP influent and effluent flows for the summer                    |     |
| 2006 experimental run                                                                    | 212 |
| Table A.5: Actual Blue PFP influent and effluent flows for the winter                    |     |
| 2007 experimental run                                                                    | 212 |
| Table E.1: Mass spectrometry ammonia volatilization data                                 | 225 |
| Table E.2: Ammonia volatilization data for the winter 2006 experimental                  |     |
| run                                                                                      | 226 |

| <b>Table E.3:</b> Ammonia volatilization data for the summer 2006 experimental |     |
|--------------------------------------------------------------------------------|-----|
| run                                                                            | 227 |

# List of Figures

| Figure 2.1: Diagram to show the major pathways of BOD removal within                  |
|---------------------------------------------------------------------------------------|
| facultative WSP                                                                       |
| Figure 2.2: Diagram to show the shifts in the dominant forms of alkalinity            |
| with respect to pH                                                                    |
| Figure 2.3: The relationship between ammonia and ammonium                             |
| equilibrium with respect to pH                                                        |
| Figure 2.4: The nitrogen cycle in natural soil and aquatic                            |
| environments                                                                          |
| Figure 2.5: Some of the nitrogen removal processes operating within                   |
| WSP                                                                                   |
| Figure 2.6: The liquid and gas phase fractions of NH <sub>3</sub> (mole) as functions |
| of temperature                                                                        |
| Figure 3.1: Final design of the ammonia volatilization capturing chamber              |
| showing modifications                                                                 |
| Figure 4.1: The two primary facultative WSP at Esholt WWTW used over                  |
| the research period                                                                   |
| Figure 4.2: The cold water storage tank used to control the flow of fresh             |
| water into the PFP's                                                                  |
| Figure 4.3: The modified inlet structures for the PFP's                               |
| Figure 4.4: The experimental set up on site at Esholt                                 |
| Figure 4.5: The C18 Isolute resin filter rig                                          |
| <b>Figure 4.6:</b> Schematic showing <sup>15</sup> N sample processing format         |
| Figure 4.7: A diagram showing the sludge depth profile locations                      |
| Figure 4.8: Measuring the sludge depth profile                                        |
| Figure 5.1: The different fractions of influent BOD <sub>5</sub> and COD for the      |
| winter 2006 experimental run (Green PFP)                                              |
| Figure 5.2: The different fractions of influent BOD <sub>5</sub> and COD for the      |
| summer 2006 experimental run (Blue PFP)                                               |
| Figure 5.3: The different fractions of influent BOD <sub>5</sub> and COD for the      |
| winter 2007 experimental run (Blue PFP)                                               |
| Figure 5.4: Removal efficiencies for various pond performance                         |
| parameters                                                                            |

| Figure 5.5: ORP profile data from within the Green PFP, winter 2006             | 114 |
|---------------------------------------------------------------------------------|-----|
| Figure 5.6: ORP profile data from within the Blue PFP, summer 2006              | 115 |
| Figure 5.7: ORP profile data from within the Blue PFP, winter 2007              | 116 |
| Figure 5.8: DO profile data from within the Green PFP, winter 2006              | 117 |
| Figure 5.9: DO profile data from within the Blue PFP, summer 2006               | 118 |
| Figure 5.10: DO profile data from within the Blue PFP, winter 2007              | 119 |
| Figure 5.11: Chlorophyll <i>a</i> pond column and effluent concentrations for   |     |
| the Green PFP, winter 2006                                                      | 120 |
| Figure 5.12: Chlorophyll <i>a</i> pond column and effluent concentrations for   |     |
| the Blue PFP, summer 2006                                                       | 121 |
| Figure 5.13: Chlorophyll <i>a</i> in-pond stratification data for the Blue PFP, |     |
| summer 2006                                                                     | 122 |
| Figure 5.14: Chlorophyll <i>a</i> pond column and effluent concentrations for   |     |
| the Blue PFP, winter 2007                                                       | 123 |
| Figure 5.15: Chlorophyll <i>a</i> in-pond stratification data for the Blue PFP, |     |
| winter 2007                                                                     | 124 |
| Figure 5.15: Pond column nitrate data for the Green PFP, winter 2006            | 125 |
| Figure 5.17: Nitrate depth profile concentrations for some of the weeks         |     |
| sampled in summer 2006                                                          | 126 |
| Figure 5.18: Nitrate depth profile concentrations for some of the weeks         |     |
| sampled in winter 2007                                                          | 127 |
| Figure 5.19: Pond column ammonium data for the Green PFP, winter                |     |
| 2006                                                                            | 128 |
| Figure 5.20: Ammonium depth profile concentrations for some of the              |     |
| weeks sampled in summer 2006                                                    | 129 |
| Figure 5.20: Ammonium depth profile concentrations for most of the              |     |
| weeks sampled in winter 2007                                                    | 130 |
| Figure 5.22: Sludge depth profile for the Green PFP after four years and        |     |
| five months of operation                                                        | 131 |
| Figure 5.23: Sludge depth profile for the Blue PFP after four years and         |     |
| five months of operation                                                        | 131 |
| Figure 5.24: Sludge depth profile for the Green PFP after five years and        |     |
| four months of operation                                                        | 132 |

| Figure 5.25: Sludge depth profile for the Green PFP after five years and                      |   |
|-----------------------------------------------------------------------------------------------|---|
| four months of operation                                                                      |   |
| Figure 5.26: Sludge depth profile for the Green PFP after five years and                      |   |
| eleven months of operation                                                                    |   |
| Figure 5.27: Sludge depth profile for the Blue PFP after seven months of                      |   |
| operation                                                                                     |   |
| Figure 5.28: Sludge depth profile for the Blue PFP after seven months of                      |   |
| operation                                                                                     |   |
| Figure 5.29: Temperature stratification data in the Green PFP, winter                         |   |
| 2006                                                                                          | • |
| Figure 5.30: pH stratification in the Green PFP, winter 2006                                  |   |
| Figure 5.31: Total weekly ammonia volatilization recorded for individual                      |   |
| weeks, winter 2006                                                                            |   |
| Figure 5.32: Temperature stratification data in the Blue PFP, summer                          |   |
| 2006                                                                                          | • |
| Figure 5.33: pH stratification in the Blue PFP, summer 2006                                   |   |
| Figure 5.34: Total weekly ammonia volatilization recorded for individual                      |   |
| weeks, summer 2006                                                                            |   |
| Figure 5.35: RWT concentration measured at Green pond effluent, for                           |   |
| winter 2006                                                                                   |   |
| Figure 5.36: Normalised RTD curve for the first experimental run                              |   |
| conducted on the Green pond, winter 2006                                                      |   |
| <b>Figure 5.37:</b> Normalised concentration curve for <sup>15</sup> N stable isotope tracer, |   |
| for the first experimental run conducted on the Green pond, winter 2006                       |   |
| Figure 5.38: RWT concentration measured at Blue pond effluent, for                            |   |
| summer 2006                                                                                   | • |
| Figure 5.39: Normalised RTD curve for the first experimental run                              |   |
| conducted on the Blue pond, summer 2006                                                       |   |
| <b>Figure 5.40:</b> Normalised concentration curve for <sup>15</sup> N stable isotope tracer, |   |
| for the Green pond, winter 2006                                                               |   |
| Figure 5.41: RWT concentration measured at Blue pond effluent, for                            |   |
| winter 2007                                                                                   |   |
| Figure 5.42: Normalised RTD curve for the first experimental run                              |   |
| conducted on the Blue pond, winter 2007                                                       |   |

| <b>Figure 5.43:</b> Normalised concentration curve for <sup>15</sup> N stable isotope tracer, |    |
|-----------------------------------------------------------------------------------------------|----|
| for the Blue pond, winter 2007                                                                | 15 |
| Figure 5.44: Evidence of hydraulic short circuiting exhibited in the Blue                     |    |
| PFP, two hours after spike injection, winter 2007                                             | 15 |
| Figure 5.45: Mass spectrometry <sup>15</sup> N data for nitrogen fractions measured           |    |
| at the pond effluent point, winter 2006                                                       | 15 |
| Figure 5.46: <sup>15</sup> N enriched suspended organic-nitrogen, winter 2006                 | 15 |
| <b>Figure 5.47:</b> <sup>15</sup> N enriched soluble organic-nitrogen, winter 2006            | 1: |
| Figure 5.48: <sup>15</sup> N enriched ammonium-nitrogen, winter 2006                          | 1: |
| Figure 5.49: <sup>15</sup> N enriched nitrate-nitrogen, winter 2006                           | 1: |
| Figure 5.50: Mass spectrometry <sup>15</sup> N data for nitrogen fractions measured           |    |
| at the pond effluent point, summer 2006                                                       | 1  |
| Figure 5.51: Mass spectrometry <sup>15</sup> N data for nitrogen fractions measured           |    |
| at the pond effluent point, winter 2007                                                       | 1  |
| Figure 5.52: <sup>15</sup> N enriched suspended organic-nitrogen, for summer 2006             |    |
| and winter 2007                                                                               | 1  |
| Figure 5.53: <sup>15</sup> N enriched soluble organic-nitrogen, for summer 2006 and           |    |
| winter 2007                                                                                   | 1  |
| Figure 5.54: <sup>15</sup> N enriched ammonium-nitrogen, for summer 2006 and                  |    |
| winter 2007                                                                                   | 1  |
| Figure 5.55: <sup>15</sup> N enriched nitrate-nitrogen, for summer 2006 and winter            |    |
| 2007                                                                                          | 1  |
| Figure 6.1: (a) winter 2006 pond mid-depth (75 cm) temperatures; (b)                          |    |
| chlorophyll a column and effluent grab sample concentrations; (c) column                      |    |
| grab sample nitrate concentrations                                                            | 1  |
| Figure 6.2: (a) winter 2007 pond mid-depth (80 cm) temperatures; (b)                          |    |
| chlorophyll <i>a</i> column and effluent grab sample concentrations; (c) column               |    |
| grab sample nitrate concentrations                                                            | 1  |
| Figure C.1: Correlated data for nitrate analysis from experimentally                          |    |
| spiked effluent samples                                                                       | 2  |
| Figure C.2: Correlated data for nitrate analysis from weekly pond                             |    |
| monitoring samples                                                                            | 2  |
| Figure D.1: Samples processed for winter 2006 suspended organic-                              |    |
| nitrogen content                                                                              | 2  |

| Figure D.2: Samples processed for winter 2006 soluble organic-nitrogen  |     |
|-------------------------------------------------------------------------|-----|
| content                                                                 | 219 |
| Figure D.3: Samples processed for winter 2006 ammonium-nitrogen         |     |
| content                                                                 | 219 |
| Figure D.4: Samples processed for winter 2006 nitrate-nitrogen          |     |
| content                                                                 | 220 |
| Figure D.5: Samples processed for summer 2006 suspended organic-        |     |
| nitrogen content                                                        | 220 |
| Figure D.6: Samples processed for summer 2006 soluble organic-nitrogen  |     |
| content                                                                 | 220 |
| Figure D.7: Samples processed for summer 2006 ammonium-nitrogen         |     |
| content                                                                 | 221 |
| Figure D.8: Samples processed for summer 2006 nitrate-nitrogen content  | 221 |
| Figure D.9: Samples processed for winter 2007 suspended organic-        |     |
| nitrogen content                                                        | 221 |
| Figure D.10: Samples processed for winter 2007 soluble organic-nitrogen |     |
| content                                                                 | 222 |
| Figure D.11: Samples processed for winter 2007 ammonium-nitrogen        |     |
| content                                                                 | 222 |
| Figure D.12: Samples processed for winter 2007 nitrate-nitrogen content | 222 |

# List of Abbreviations and Acronyms

| ANNAMOX    | Anaerobic ammonium oxidation            |
|------------|-----------------------------------------|
| AOA        | Ammonia oxidising archaea               |
| AOB        | Ammonia oxidising bacteria              |
| BOD        | Biochemical oxygen demand               |
| COD        | Chemical oxygen demand                  |
| DGGE       | Denaturing gradient gel electrophoresis |
| DO         | Dissolved oxygen                        |
| EU         | European Union                          |
| FC         | Faecal coliforms                        |
| HRT        | Hydraulic retention time                |
| PCR        | Polymerase chain reaction               |
| p.e.       | Population equivalent                   |
| PFP        | Primary facultative pond(s)             |
| ORP        | Oxidation reduction potential           |
| RTD        | Residence time distribution             |
| RWT        | Rhodamine WT                            |
| SS         | Suspended solids                        |
| TKN        | Total Kjeldahl nitrogen                 |
| UK         | United Kingdom                          |
| UWWTD      | Urban wastewater treatment directive    |
| VFA        | Volatile fatty acids                    |
| WHO        | World Health Organization               |
| WSP        | Wastewater stabilization pond(s)        |
| WWTW       | Wastewater treatment works              |
| $\theta_0$ | Theoretical/nominal HRT                 |
| θ          | Actual HRT                              |
| $t^{-}$    | Mean HRT                                |
|            |                                         |