Computational Fluid Dynamics Modelling of Baffled Waste Stabilization Ponds

Chimwemwe Gawasiri Banda

Submitted in accordance with the requirements for the degree of **Doctor of Philosophy**

School of Civil Engineering University of Leeds

May 2007

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

This copy is supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

Acknowledgments

Over the three years that I have worked on this thesis, I have received help, assistance and guidance from a number of people. Of these, I will only be able to mention a few. My supervisors, Professor Duncan Mara and Dr. Andrew Sleigh must be first in these acknowledgments. Professor Duncan Mara provided excellent guidance and advice on the performance of waste stabilization ponds, while Dr. Andrew Sleigh was very supportive on the CFD models of waste stabilization ponds that were undertaken. Thank you, Duncan and Andrew, for the high standard you set for the thesis. Without your support and advice, this thesis could not have been produced the way it is. Professor Duncan Mara and Dr. Andrew Sleigh deserve special thanks for believing in my potential that I could do the research work successfully. This has been a source of strength and encouragement in carrying out this thesis.

Dr. Catherine Noakes should also be given credit for the help and guidance she provided in running FLUENT software.

I also wish to express my appreciation to the structural engineering technicians of the School of Civil Engineering for the support they provided during the construction of baffles in the pilot-scale primary facultative ponds. In addition, I am thankful to the public health engineering technicians for their guidance of carrying out various experiments in the laboratory. I am also thankful to the postgraduate research staff of the School of Civil Engineering for their administration work towards the research work. Let me also thank my fellow PhD students, especially Michelle Johnson, Eleanor van der Linde and Miller Carmargo Valero for their encouragement during times when the research work was difficult and demanding.

I am very grateful to my sponsors, the Overseas Research Scheme Scholarship and the University of Leeds for their financial support that enabled my study and stay in England. Finally, let me thank my family in Leeds who have been the source of comfort whenever I felt weak and discouraged due to pressure of the research work. I am grateful to my wife, Hilda, who gave me encouragement and support during the three-year period of the PhD programme.

Abstract

Current design procedures for waste stabilization ponds do not take into account (i) hydraulic short-circuiting and stagnation that reduce their treatment efficiency; (ii) the improved treatment efficiency and the hydraulic performance that is initiated when baffles of various configurations are fitted in the pond; and (iii) the effects of wind velocity and thermo-stratification.

Computational fluid dynamics (CFD) is an innovative design approach that overcomes the limitations of classic and modern pond design methods. CFD is used as a reactor model to assess realistically the treatment efficiency and the hydraulic performance of waste stabilization ponds under the effects of short-circuiting and stagnations, baffles, wind velocity and thermo-stratification. Validation of the CFD model was based on experimental data of *E. coli* numbers, BOD₅ concentration and tracer experiments that were obtained from the unbaffled and baffled pilot-scale primary facultative ponds at Esholt, Bradford.

The results of *E. coli* numbers and the hydraulic performance of the CFD model of the standard facultative pond showed that the 70% pond-width baffles do not *always* improve the pond performance to the extent previously reported. *E. coli* removal and the hydraulic performance in waste stabilization ponds with the 70% pond-width baffles diminished in situations where the width of flow channel in baffle compartments was less than that at the baffle-opening (i.e., less than 30% pond-width) due to the initiation of the significant hydraulic short-circuiting. However, the most effective baffle length that gave the maximum pond performance was the one (i.e., 82% pond-width in the standard pond tested) that formed uniform flow channel width in baffle compartments and at baffle openings as this created a 'very strong' plug flow pattern. The CFD model showed that wind effects can affect significantly the pond performance depending on the prevailing wind direction with respect to the wastewater flow in the pond. The wind speed that blows in the same direction as the wastewater flow reduced the pond performance while that in the opposite direction of the wastewater flow improved the pond performance.

The experimental data and numerical results from the CFD analysis showed that there was insignificant difference in the treatment performance of the pilot-scale primary facultative pond when isothermal and thermo-stratification conditions developed in the pond. The experimental data showed that the treatment performance of waste stabilization ponds could be improved significantly by installing the 70% width-baffles across the longitudinal axis of the pond at a uniform separation.

The 3D-CFD model satisfactorily predicted the treatment performance of the three pilot-scale primary facultative ponds that were operated with and without baffles. The significance of these CFD model results is that regulators and designers can use CFD confidently both as a reactor model and as a hydraulic tool to assess realistically the treatment efficiency of waste stabilization ponds under the effects of baffles, thermo-stratification, wind and the hydraulic short-circuiting. The results of the baffled pilot-scale primary facultative ponds show that baffles can reduce significantly *E. coli* concentrations and other wastewater pollutants to achieve the required level of pathogen reduction for either restricted or unrestricted crop irrigation, thus obviating the need for maturation ponds and so minimizing the land area requirements of waste stabilization pond systems.

In memory of my father and my sister, Joseph Banda and Dorrah Banda. I know that they would have been truly pleased with this achievement. This work is dedicated to my wife, Hilda, and my daughter, Annabelle.

Table of contents

Acknowledgments	ii
Abstract	iii
Table of contents	vi
List of tables	x
List of figures	xii
Abbreviations and symbols	XV
Chapter 1. Introduction	1
1.1 Aims and objectives	4
1.2 Arrangement of thesis	5
Chapter 2. Literature Review	8
2.1 Introduction	8
2.1.1 Anaerobic ponds	8
2.1.1.1 Classic design approach of anaerobic ponds	9
2.1.2 Facultative Ponds	10
2.1.3 Design principles of facultative ponds	11
2.1.3.1 Surface BOD Loading	11
2.1.3.2 von Sperling's design approach to facultative ponds	13
2.1.3.3 CFD-based design of facultative ponds	15
2.1.4 Maturation Ponds	16
2.2 Hydraulic flow patterns in waste stabilization ponds	17
2.2.1 Completely mixed flow pattern	17
2.2.2 Plug flow pattern	19
2.2.3 Dispersed hydraulic flow regime	22
2.2.4 Tracer Experiments	26
2.2.4.1 Residence time distribution curves	26
2.2.4.2 The mean hydraulic retention time	26
2.3 Effects of baffles on the performance of waste stabilization ponds	30
2.3.1 Short-baffles in facultative ponds	37

2.4	Effects of wind velocity on the performance of waste stabilization	
ponds		37
2.5 Effect	s of thermal stratification on the performance of waste stabilization	
ponds		39
2.6 The b	asic CFD equations4	12
2.6.1 Rev	view of CFD PhD theses on waste stabilization ponds	19
2.6.1.1	Wood (1997) PhD thesis	19
2.6.1.2	Salter (1999) PhD thesis	52
2.6.1.3	Shilton (2001) PhD thesis	54
2.6.1.4	Sweeney (2004) PhD thesis	57
2.7 Summ	nary of the literature review5	;9
Chapter 3. M	ethodology of the CFD model6	51
3.1 Introd	luction6	51
3.1.1 Dev	velopment of the source term function of <i>E. coli</i> and BOD ₅ removal.	52
3.1.1.1	A model test for the simulation of <i>E. coli</i> decay in plug flow pond.	58
3.1.2 Dev	velopment of the source term function of the spatial residence time 7	70
3.1.2.1	A model test for the simulation of spatial residence time in plug flow	1
pond		74
3.2 Mesh	-independent solution tests for CFD7	6
	sh-independent solution for unbaffled waste stabilization pond model	
76		
	sh-independent solution for the CFD model for baffled waste	
	on pond	/9
	sh-independent solution for the CFD model of the pilot-scale baffled	20
	cultative pond	
3.3 Summ	hary of the methodology for the CFD model	32
Chapter 4. Fi	eldwork methodology 8	33
-	ruction of the pilot-scale baffled primary facultative pond	
	sign of inlet and outlet structures	
	tion of the pilot-scale facultative pond	
1	sampling and data collection	
4.2.1.1		

4	A.2.1.2 Depth profiles for dissolved oxygen, redox potential and pH	. 87
4	A.2.1.3 Influent, effluent and column samples	. 87
4.3	Laboratory methods	. 87
4.3	.1 Settleable solids	. 87
4.3	.2 Suspended solids	. 88
4.3	.3 BOD ₅	. 88
4.3	.4 Chlorophyll a	. 88
4.3	.5 E. coli	. 88
4.3	.6 Ammonia	. 88
4.3	.7 Organic nitrogen	. 89
4.4	Tracer experiment	. 89
4.5	Summary of the methodology for the fieldwork	. 89
Chart		01
5.1	r 5. Results of CFD models of waste stabilization ponds	
5.2		
5.2 5.3	3D CFD model set up CFD models of waste stabilization ponds	
5.3		
5.3	-	
5.3		
	.4 Boundary conditions	
5.4	Simulation of the facultative pond	
5.5.	CFD model results	
5.5		
5.5		
5.5	-	
5.5	-	
5.5	-	
	.6 Model results for the ten-baffled facultative pond	
5.6	Performance assessment of 70% pond-width baffle arrangements	
5.7	Models results of facultative pond with short baffles	
	.1 Flows patterns and residence time distributions in the facultative pond	
	del with short-baffles	116
5.8	CFD models of facultative ponds with simulated wind effects	
	±	

5.8.1 Inclusion of wind velocity in the CFD model	18
5.8.2 Model simulation of facultative pond with small surface area 1	19
5.8.3 Boundary conditions and flow regime	20
5.8.4 Model results of the facultative pond with small surface area	21
5.8.5 Model simulation of the facultative pond with large surface area	22
5.8.6 Model results of the facultative pond with large surface area 12	22
5.9 Two-baffle facultative pond model with simulated wind effects	27
5.9.1 Simulation of the two-baffle facultative pond	27
5.9.2 Results of the two-baffle facultative pond model	27
5.10 Four-baffle facultative pond model with simulated wind effects	28
5.10.1 Simulation for the four-baffle facultative pond model	29
5.10.2 Results of the four-baffle facultative pond model	29
5.11 Summary of the CFD model results	30
	~~
Chapter 6. Fieldwork results and calibration of the 3D CFD model 1.	
6.1 Introduction	
6.2 Physicochemical Parameters	
6.2.1 <i>E. coli</i> removal	
$6.2.2 \text{BOD}_5 \text{ removal} $	
6.2.3 Ammonia removal	
6.2.4 Total nitrogen removal	
6.2.5 Suspended solids removal	
6.2.6 Chlorophyll-a	
6.3 Facultative conditions in the baffled pilot-scale ponds	
6.3.1 Anaerobic conditions	
6.3.2 Dissolved oxygen and pH profile in baffle compartments	
6.4 Thermo-stratification conditions	
6.4.1 Temperature profile during the winter season	
6.4.2 Temperature profile during summer season	
6.5 The hydraulic performance of the three pilot-scale primary facultative pond	
6.6 Calibration of the 3D CFD model	56
6.6.1 Simulation of <i>E. coli</i> and BOD ₅ removal in the three pilot-scale primary	
facultative ponds	56

6.6.1.1 Simulation of iso	thermal and thermo-stratification conditions in the
pilot-scale primary faculta	tive pond 158
6.6.1.2 Boundary conditi	ons of the CFD model of the pilot-scale primary
facultative pond	
6.6.1.3 Effluent E. coli n	umbers and BOD_5 in the CFD and the three pilot-
scale	
primary facultative ponds.	
6.6.2 Results of the tracer e	xperiments in the CFD and the three pilot-scale
primary facultative ponds	
6.7 Summary of the chapter	
Chapter 7. Discussion	
7.1 Performance assessment	of the pilot-scale primary facultative ponds 169
7.2 CFD model calibration .	
7.2.1 Simulated tracer expe	riments 175
7.2.2 Simulation of BOD ₅ r	emoval in the CFD model of the pilot-scale pond 177
7.2.3 Simulation of E. coli 1	removal in the CFD model of the pilot-scale pond178
7.3 Performance assessment	of the CFD model results
7.4 Performance assessment	of CFD model with simulated wind effects 185
7.5 Practical application of C	CFD-based design of waste stabilization ponds 187
Chapter 8. Conclusions and rec	ommendations for further work
8.1 Conclusions	
8.2 Recommendations for fu	urther work
References	
Appendix A	
A1. Source term functions of	<i>E. coli</i> , BOD removals and the spatial residence
time distribution in the CFD me	odel of waste stabilization ponds with isothermal
conditions	
A2. Source term functions of	<i>E. coli</i> , BOD removals and the spatial residence
time distribution in the CFD me	odel of waste stabilization ponds with thermo-
stratification conditions	

Appe	ndix B	.5
B1.	The average design flow in the pilot-scale ponds21	5
B2.	The empirical equation of the wastewater density function	6
Appe	ndix C 21	8
C1.	The influent wastewater characteristics	8
Appe	ndix D 22	20
D1.	Chlorophyll-a concentration in the two-baffle and four-baffle pilot-scale prima	ry
facult	ative ponds 22	20
D2.	Dissolved oxygen and pH profiles in the two-baffle and four-baffle pilot-sca	le
prima	ry facultative ponds22	22

List of Tables

Table 3.1	Predicted effluent E. coli counts and log-units removal from	
	the outlet surface of unbaffled waste stabilization pond model	79
Table 3.2	Predicted effluent E. coli counts and log-units removal of E. coli	
	from the pond outlet surface of the two-baffle pond model	80
Table 3.3	Predicted effluent E. coli counts and log-units removal from	
	the outlet surface of the baffled pilot-scale primary facultative	
	pond	82
Table 5.1	Predicted effluent E. coli counts per 100 ml in the facultative pond	
	with baffles of various configurations	96
Table 5.2	Results of E. coli counts per 100 ml in a facultative pond model	
	with ten baffle configurations	108
Table 5.3	Predicted effluent E. coli counts per 100 ml in the facultative pond	
	model with short baffles of various configurations	114
Table 5.4	CFD results of the effluent E. coli counts per 100 ml in a pilot	
	scale pond with and without simulated wind effects	121
Table 5.5	CFD results of effluent E. coli counts per 100 ml in a standard	
	facultative pond with and without simulated wind effects	123
Table 5.6	The predicted log-units removal of E. coli in a standard facultative	
	pond with and without simulated wind effects	123
Table 5.7	Change in E. coli removal based on log-units removal in the	
	standard facultative pond model with and without simulated wind	
	effects	124
Table 5.8	Effluent E. coli counts per 100 ml in a two-baffle facultative pond	
	and unbaffled facultative pond with and without wind effects	128
Table 6.1	Mean effluent <i>E. coli</i> numbers and BOD ₅ in the three pilot-scale	
	primary facultative ponds and CFD with isothermal conditions	160
Table 6.2	Effluent E. coli numbers and BOD ₅ in the three pilot-scale primary	
	facultative ponds and CFD with thermo-stratification effects	161
Table 6.3	The average hydraulic retention time and dispersion number in	
	the three pilot-scale primary facultative ponds and CFD model	166
Table 7.1	Treatment efficiency and hydraulic performance of the pilot-scale	

	primary facultative ponds	169
Table 7.2	Reported values of $K_{B(20)}$ and ϕ in the first-order rate constant	
	removal equation of E. coli in waste stabilization ponds	179
Table 7.3	Effluent E. coli counts per 100 ml in CFD model of the primary	
	facultative pond with various baffle configurations	182
Table B1	Summary statistics of the design flow in the pilot-scale ponds	216
Table C1	Summary statistics of BOD ₅ , E. coli, ammonia, total nitrogen	
	and suspended solids in the influent	218
Table C2	Summary statistics of BOD ₅ and <i>E. coli</i> in the influent during	
	winter and summer season	219
Table D1	Summary statistics of chlorophyll-a concentration in the	
	two-baffle and four-baffle pilot-scale primary facultative ponds	222

List of Figures

Figure 2.1	The general arrangement of the 60% pond-width baffles in the two)-
	baffle proto-type pond	30
Figure 2.1	The general arrangement of the 90% pond-length baffles in the tw	0-
	baffle proto-type pond	31
Figure 3.1	E. coli distribution and velocity vector in the plug flow pond	
	Model	69
Figure 3.2	Longitudinal profile of E. coli decay in the CFD model and	
	plug flow pond model	70
Figure 3.3	Longitudinal profile of residence time distribution in the CFD	
	model and plug flow pond equation	75
Figure 3.4	The general shape of a hexahedral cell with six rectangular faces	77
Figure 3.5	The general shape of a tetrahedral cell with four triangular	
	faces	81
Figure 4.1	Layout of the two-baffle configuration in the pilot-scale pond	84
Figure 4.2	Layout of the four-baffle configuration in the pilot-scale pond	84
Figure 5.1	The general arrangement of conventional baffles of different	
	lengths in the facultative pond	95
Figure 5.2	Flow pattern and residence time distributions of wastewater in	
	the unbaffled facultative pond	97
Figure 5.3	Flow pattern and residence time distributions of wastewater in	
	the two-baffled facultative pond model	99
Figure 5.4	Flow pattern and the residence time distribution of wastewater in	
	the four-baffled facultative pond	100
Figure 5.5	Flow pattern and residence time distribution in the six-baffled	
	pond	103
Figure 5.6	Flow patterns of wastewater distributions in the eight-baffled	
	facultative ponds	104
Figure 5.7	Flow patterns and the residence time distributions of wastewater	
	in the ten-baffled facultative pond with the 70% pond-width	
	baffles	106

Figure 5.8	Flow patterns and the residence time distributions of wastewater	
	in the ten-baffled facultative pond with the 82% pond-width	
	baffles	107
Figure 5.9	Flow patterns in ten-baffled facultative pond configurations	109
Figure 5.10	Residence time distributions of wastewater in ten-baffled	
	facultative pond configurations	111
Figure 5.11	General arrangement of short baffle configuration in the	
	facultative pond	114
Figure 5.12	Flow patterns in the unbaffled facultative pond and the	
	facultative pond with the 15% pond-width baffles at various	
	positions from the inlet and outlet structures	117
Figure 5.13	Residence time distributions in the unbaffled facultative pond	
	and the facultative pond with the 15% pond-width baffles at	
	various positions from the inlet and outlet structures	117
Figure 5.14	Prevailing wind directions in the pilot-scale primary facultative	
	pond	120
Figure 5.15	Flow pattern in a facultative pond with wind blowing in the same	
	direction of the wastewater flow	125
Figure 5.16	Flow patterns in a facultative pond with wind blowing against the	
	direction of the wastewater flow	126
Figure 6.1	Results of E. coli numbers in the effluents of the three pilot-scale	
	primary facultative ponds	133
Figure 6.2	Results of BOD ₅ in the unfiltered and filtered effluents of the three	e
	pilot-scale primary facultative ponds	138
Figure 6.3	The results of ammonia in the filtered and unfiltered effluents of the	ne
	three pilot-scale primary facultative ponds	141
Figure 6.4	Results of total nitrogen in the unfiltered and filtered effluents of	
	the three pilot-scale primary facultative ponds	144
Figure 6.5	Results of suspended solids in the effluent of the three pilot-scale	
	primary facultative ponds	147
Figure 6.6	Results of chlorophyll- a in baffle compartments of the four-baffle	;
	pilot-scale pond	148

Figure 6.7	Results of the dissolved oxygen profiles in the four-baffle	
	pilot-scale pond	150
Figure 6.8	Results of temperature profile in the two-baffle pilot-scale pond	
	during the winter season	152
Figure 6.9	Results of the temperature profile in the pilot-scale pond during	
	summer season	153
Figure 6.10	The normalised residence time curves in the three pilot-scale	
	ponds	155
Figure 6.11	Correlation data of the predicted-CFD and the observed effluent	
	E. coli counts in the baffled pilot-scale ponds	157
Figure 6.12	Normalised residence time distributions of CFD and the unbaffled	l
	pilot-scale primary facultative pond	164
Figure 6.13	Normalised residence time distributions of CFD and the two-baffl	e
	pilot-scale primary facultative pond	164
Figure 6.14	Normalised residence time distributions of the CFD and the	
	four-baffle pilot-scale primary facultative pond	165
Figure B1	The weekly wastewater flow in the pilot-scale ponds	215
Figure B2	The density function of wastewater	217
Figure D1	Chlorophyll concentration in the two-baffle pilot-scale primary	
	facultative pond	220
Figure D2	Chlorophyll concentration in the four-baffle pilot-scale primary	
	facultative pond	221
Figure D3	Dissolved oxygen concentration in the two-baffle and four-baffle	
	pilot-scale primary facultative ponds	223
Figure D4	pH profiles in the two-baffle and four-baffle pilot-scale primary	
	facultative ponds	224

Abbreviations and Symbols

APHA	American Public Health Association
A_{f}	area of facultative pond
BOD	biochemical oxygen demand for 5 days
c	tracer concentration
CFD	computational fluid dynamics
COD	chemical oxygen demand
C _D	drag coefficient
Cv	specific heat capacity
cv	volume of a cell
d	dispersion number
D_{f}	depth of facultative pond
D	coefficient of longitudinal dispersion
е	net evaporation
E. coli	Escherichia coli
H_2S	hydrogen sulphide gas
i	internal energy
k	thermal conductivity
k-e	kinetic and dissipation energy model
$K_{I(\mathrm{T})}$	first-order rate constant removal of the pollutant at temperature T
<i>K</i> ₁₍₂₀₎	first-order rate constant removal of the pollutant at temperature 20° C
K _{BOD P}	BOD removal constant rate in the plug flow pond model
K _{BODD}	BOD removal constant rate in the dispersed flow pond model
L_e	effluent BOD ₅ concentration
L_i	influent BOD ₅ concentration
l	length of the flow path
L	pond length
Lo	baffle opening
n	number of maturation ponds
N_i	influent E. coli count per 100 ml
N _e	effluent E. coli count per 100 ml

N _{faces}	number of faces in a cell
р	pressure
pН	activity of hydrogen ions = log_{10} (hydrogen ion concentrations)
<i>Q</i> ,	mean design wastewater flow
s ²	variance of the residence time distribution
QUICK	quadratic upstream interpolation for convective kinetics
R^2	coefficient of correlation
S_m	momentum source term
\mathbf{S}_{i}	energy source term
$S \phi$	source term of scalar variable ϕ
SO_4	sulphate
SS	suspended solids
Т	temperature
t	time taken by tracer from the inlet to outlet
\overline{t}	mean hydraulic retention time obtained from tracer experiments
TKN	total Kjeldahl nitrogen
USA	United States of America
USD	United States Dollar
UDF	user defined function
U	velocity vector
u, v, w	velocity in x, y and z directions respectively
U_{10}	wind velocity at 10 m elevation above the pond surface
W	length of the pond, baffle spacing, pond width
WHO	World Health Organization
WSP	waste stabilization ponds
heta	theoretical hydraulic retention time
λ_s	surface BOD loading
λ_{v}	volumetric organic BOD loading rate
t	Shear stress due to wind velocity
$ ho_a$	density of air
°C	degree Celsius
∞	infinity
ρ	density of wastewater

$\partial x, \partial y, \partial z$	differential change in distance
∂t	differential change in time
μ	dynamic viscosity
Φ	energy dissipation
ϕ	scalar variable
2D	two dimensions
3D	three dimensions