WASTEWATER REUSE 4 Health protection

1.	<image/> <image/> <image/>	The last of these four presentations on wastewater use in agriculture is concerned with the protection of human health.
2.	The WHO 2006 guidelines for wastewater use in agriculture □ Based on a tolerable additional disease burden of ≤10° DALY loss per person per year (pppy) □ DALY = disability-adjusted life year] □ No guideline values for viral, bacterial or protozoan pathogens, only for helminth eggs	The 2006 Guidelines of the World Health Organization are based on a 'tolerable additional disease burden' of no more than 10^{-6} DALY loss per person per year, where DALY stands for d isability- a djusted life year, and we'll come to this in a moment. The new WHO Guidelines don't contain any guideline values for viral, bacterial or protozoan pathogens, only for helminth
3.	 State 10-6 DALY loss pppy Used by WHO in its 2004 Guidelines for Drinking Water Quality Extremely 'safe' as people expect their drinking water to be extremely safe Same level of health protection applied to wastewater-irrigated food, as people expect the food they eat to be as safe as the water they drink 	eggs. This 'tolerable additional disease burden' of no more than 10^{-6} DALY loss per person per year was used by WHO in the 2004 edition of its <i>Guidelines for Drinking</i> <i>Water Quality</i> , and it's extremely 'safe' as people expect their drinking water to be extremely safe. This same level of health protection is applied to wastewater-irrigated foods as people expect the food they eat to be as safe as the water they drink.
4.	≤10 ⁻⁶ DALY loss pppy What does it mean? 1 DALY loss = 1 year of illness or 1 year lost due to premature death [If a child of 3 dies due to a disease, the DALY loss caused by the disease = (70 - 3) = 67 years (where 70 = life expectancy)]	OK, but what does a 10^{-6} DALY loss per person per year actually mean? Well, a 1 DALY loss equals 1 year of major illness or 1 year lost due to premature death. For example, if a child of 3 dies due to some disease, then the DALY loss caused by that disease is 70 minus 3, or 67 years, where 70 is the child's life expectancy.

5.	<pre> State of the second seco</pre>	Now, 10^{-6} DALY loss per person per year equals (365 × 24 × 60 × 60), that's the number of seconds in a year, × 10^{-6} , which is a loss of about 32 disability-adjusted life <i>seconds</i> , or 'DALseconds', per person per year. So, it's OK if you're ill for 32 seconds a year.
6.	≤10 ⁻⁶ DALY loss pppy What does it mean? 1 DALY loss = 1 year of illness or 1 year lost due to premature death [If a child of 3 dies due to a disease, the DALY loss caused by the disease = (70 - 3) = 67 years (where 70 = life expectancy)] Actually DALYs should be applied only to populations, not individuals. So it's really a tolerable additional disease burden of 1 DALY loss per million population per year	In point of fact, DALY losses should only be applied to populations, and not to individuals; so really this 10 ⁻⁶ DALY loss per person per year is really a tolerable disease burden of 1 DALY loss per million people per year.
7.	Conversion of ≤10 ⁻⁶ DALY loss pppy to risk of infection pppy Tolerable disease risk pppy = Tolerable DALY loss pppy DALY loss per case Tolerable infection risk pppy = Tolerable disease risk pppy Disease/infection ratio ← 0-1	Now we have to convert this 10^{-6} DALY loss per person per year to something we can use. First we determine the tolerable disease risk by dividing the 10^{-6} DALY loss per person per year by the DALY loss per case of the disease in question; and then we calculate the tolerable infection risk by dividing the tolerable disease risk that we've just determined by the disease/infection ratio, which is some- where between 0 and 1, as not everybody who is infected becomes ill.
8.	<section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	This table lists the index pathogens used: rotavirus, the bacterium <i>Campylobacter</i> , and <i>Cryptosporidium</i> , a protozoon. The table also gives the DALY loss per case of disease caused by them; this can be thought of the disease 'cost' in DALYs per disease episode. There's a slight difference in rotavirus 'costs' in industrialized and developing counties, but not for the other two. The table gives, for each pathogen, the tolerable disease risk per person per year ['pppy'] for the 10 ⁻⁶ DALY loss per person per year; the disease/infection ratio; and the resulting tolerable infection risk per person per year, using the equations on the previous slide.

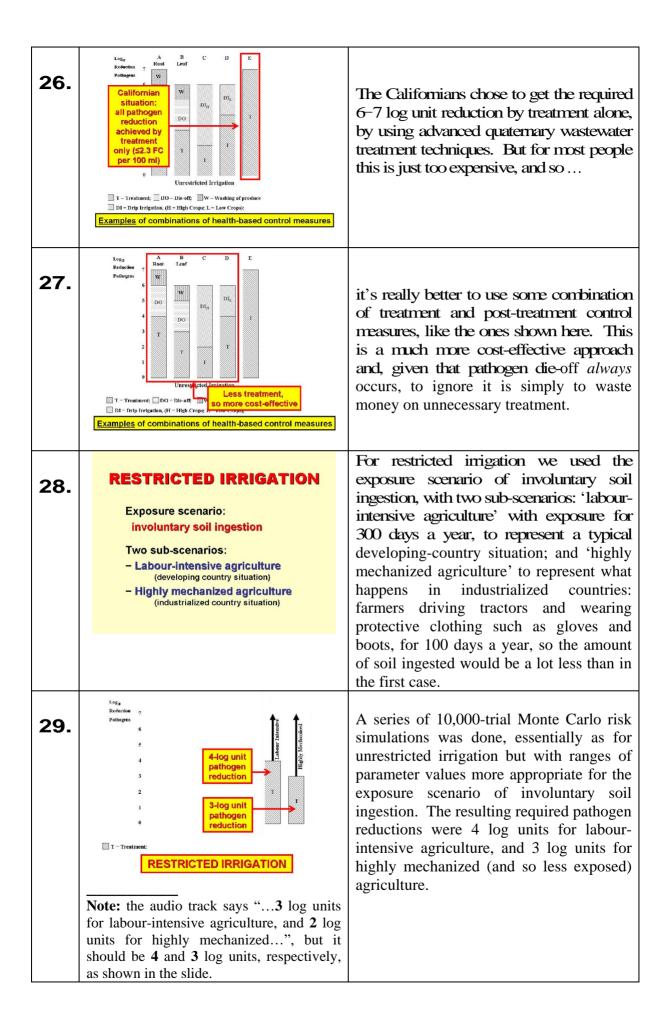
9.	$\label{eq:product} DALY losses, disease finite-ction ratios and tolerable interction risks for rotavirus, Campylobacter and Crypto spondium infection risks for rotavirus, Campylobacter and Crypto spondium infection risks for rotavirus, Campylobacter and Crypto spondium ratio ratio ratio ratio retrained by the spondium ratio ra$	These values tell us that a reasonable <i>design</i> risk for rotavirus <u>disease</u> is 10^{-4} per person per year, and for rotavirus <u>infection</u> risk 10^{-3} per person per year.
10.	Disease risk of 10 ⁻⁴ pppy is extremely cautiousDiarrhoeal disease (DD) incidence pppy in 2000RegionDD incidence in all agesDD incidence in 0-4 year oldsDD incidence in 5-80+ year oldsIndustrialized0.20.2-1.70.1-0.2countries0.8-1.32.4-5.20.4-0.6Global0.73.70.4	However, this design rotavirus <u>disease</u> risk of 10^{-4} per person per year is extremely cautious, given the much, much higher actual incidence of diarrhoeal disease, which in the world as a whole is 0.4 per person per year for the over-fives. That's roughly 10^{-1} per person per year, so our 'design' rotavirus disease risk of 10^{-4} per person per year is some <u>three</u> orders of magnitude lower than the actual incidence of diarrhoeal disease in the world today.
11.	 The real question is: Not how many pathogens and/or <i>E. coli</i> permitted per 100 ml of treated wastewater (the 1989 WHO approach) But how many pathogens can be ingested without exceeding the tolerable rotavirus infection risk of 10⁻³ pppy (i.e., 10⁻⁶ DALY loss pppy)? Pathogens in raw wastewater reduced by (a) treatment and (b) post-treatment, but pre-ingestion, health-protection control measures 	Now, the real question is not how many pathogens or <i>E</i> coli are permitted in the treated wastewater (this was the approach adopted in the 1989 WHO Guidelines), but how many pathogens can be ingested without exceeding the tolerable rotavirus infection risk of 10^{-3} per person per year. Pathogens in the raw wastewater are reduced by treatment, but also, and this is very important, by post-treatment health-protection control measures.
12.	 Health-protection control measures For unrestricted irrigation: Wastewater treatment Method of wastewater application Die-off between last irrigation and consumption Food preparation (washing/disinfection/ peeling/cooking) 	These health-protection control measures, apart from wastewater treatment, are: the method of wastewater application, and this refers specifically to drip irrigation; the pathogen die-off that occurs between the last irrigation and consumption; and how food that is eaten uncooked, such as salads and some vegetables, is prepared; and this includes washing with clean water, disinfecting, and peeling.

13.	What total log unit reduction of pathogens required?	So the key question is: What is the total log unit pathogen reduction required, so that the tolerable rotavirus infection risk of 10 ⁻³ per person per year is not exceeded?
14.	What total log unit reduction of pathogens required? The answer comes from QMRA	and the answer comes from QMRA , quantitative microbial risk analysis. Ideally it should come from epidemi- ological data, but we don't have sufficient good-quality data to allow us to do this.
15.	Example calculation Assume: 1. 5000 rotaviruses/litre raw wastewater 2. 10 ml of treated w'w remaining on 100 g lettuce after irrigation 3. 100 g lettuce eaten per person every 2 d Dose <i>d</i> rotaviruses = no. of rotaviruses on 100 g lettuce at time of consumption	We'll now illustrate the QMRA approach by means of an example set of calculations. First we have to make some reasonable assumptions – for example, let's assume that the raw wastewater contains 5000 rotaviruses per litre; that 10 ml of treated wastewater remain on 100 g of lettuce after irrigation; and that people eat 100 g of lettuce every second day. The pathogen dose d in the QMRA equations is, in this case, the number of rotaviruses on 100 g of lettuce at the time of consumption.
16.	Determine <i>d</i> by QMRA 1. Risk of infection per exposure event – $P_1(d)$: $P_1(d) = 1 - (1 - 10^{-3})^{[11/(365/2)]} = 5.5 \times 10^{-6}$ 2. <i>β</i> -Poisson dose-response model: $d = \{[1 - 5.5 \times 10^{-6}]^{-1/0.253} - 1\}/\{6.17(2^{1/0.253} - 1)\}$ $= 5 \times 10^{-5}$ rotaviruses per exposure 3. The required no. of rotaviruses is 5×10^{-5} per 10 ml (vol. on lettuce) = 5×10^{-3} per litre	So we have to determine <i>d</i> by QMRA and we do this as follows: We know $P_{I(A)}(d)$, the annual risk of infection from <i>n</i> exposures per year to the pathogen dose <i>d</i> , because this is the tolerable rotavirus infection risk of 10^{-3} per person per year; and <i>n</i> is 365/2 as people eat wastewater-irrigated lettuce every second day.
	Note: the audio recording says " the pathogen dose to the pathogen dose d , is 5.5×10^{-5} ", but it should be " 5.5×10^{-6} " (as shown in the slide).	So we can calculate, as shown in the first equation on the slide, that $P_I(d)$, an individual's risk of infection from a single exposure to the pathogen dose <i>d</i> , is 5.5×10^{-6} . We now use the β -Poisson dose-

		response model to calculate <i>d</i> for this value of $P_{I}(d)$ and, as shown on the slide, <i>d</i> is 5×10^{-5} rotaviruses, and this is the number of rotaviruses per 10 ml (the volume of treated wastewater remaining on 100 g of lettuce), or 5×10^{-3} rotaviruses per litre .
17.	 QMRA, continued 4. 5000 rotaviruses per I raw wastewater, and 5 × 10⁻³ per I just before consumption 5. So the required log unit reduction = log(5000) - log(5 × 10⁻³) = 3.7 - (-2.7) = 6 	So, there are 5000 rotaviruses per litre of raw wastewater and 5×10^{-3} per litre just before consumption; therefore the required log unit reduction is: $log(5000) - log(5 \times 10^{-3})$ which equals 6.
18.	<section-header><section-header><section-header><image/><image/><image/><image/><image/></section-header></section-header></section-header>	Now the above set of calculations used 'fixed' parameter values – for example, exactly 10 ml of wastewater remaining on 100 g of lettuce after irrigation. But really we can't be so certain: it might be a little more or a little less, or even a lot more or a lot less. To overcome this 'uncertainty' we can assign a range of reasonable values to each parameter, so we could say, for example, that somewhere between 10 and 15 ml of wastewater remains on 100 g of lettuce after irrigation. We assign a range of values for each parameter in the QMRA equations, although we can assign a 'fixed' value to any particular parameter if we want to – for example, everyone eats essentially exactly 100 g of lettuce every 2 days. We then use a computer program that randomly selects a value for each parameter from within the range specified for it, and it then calculates the resulting risk per person per year. It then repeats this single calculation for a total of usually 10,000 times, and calculates median infection risks, or 95-percentile risks, or whatever we want. This reiteration is called a multi-trial, in our case a 10,000- trial, Monte Carlo simulation, and in our case it's a simulation of the health risks associated with wastewater irrigation.

	<section-header><section-header><image/><image/><image/><image/><image/><image/><image/><image/></section-header></section-header>	In the work we did here in Leeds, with colleagues from the London School of Hygiene and Tropical Medicine, we considered both 'restricted' and 'unrestricted' irrigation. Restricted irrigation is the term used for the irrigation of all crops <i>except</i> salad crops and vegetables that may be eaten uncooked, such as cabbage, carrots and onions; and unrestricted irrigation is used for the irrigation of everything <i>including</i> salad crops and vegetables that may be eaten uncooked. We used two exposure scenarios: lettuce consumption for unrestricted irrigation; this scenario had been developed in the mid-1990s by Professor Shuval of the Hebrew University of Jerusalem, and we extended it a little by including a root crop, onions. For restricted irrigation we developed the scenario of 'involuntary soil ingestion'. People working in wastewater-irrigated fields inevitably get some contaminated soil on their fingers and from time to time, and without thinking about it, they put a finger or two on their lips or in their mouth and some of the soil particles from their fingers are ingested as a result.
19.	MC-simulated risks for Shuval's lettuce consumption scenario Assumptions: 100 g lettuce eaten per person per 2 days 10-15 ml wastewater remaining on 100 g lettuce after irrigation 0.1-1 rotavirus and Campylobacter, and 0.01-0.1 Cryptosporidium oocyst, per 10⁵ E. coli 10⁻²-10⁻³ rotavirus and Campylobacter die-off, and 0-0.1 oocyst die-off, between harvest and consumption D50 = 896 ± 25% and α = 0.145 ± 25% for Campylobacter; and r = 0.0042 ± 25% for Cryptosporidium 	So, first, unrestricted irrigation, and the slide shows the range of values we chose for each parameter in the QMRA calculations. There was one fixed value, 100 g of lettuce per person per 2 days; and the range of values for the others was 10–15 ml of wastewater remaining on 100 g lettuce after irrigation; for every $10^5 E$. <i>coli</i> in the wastewater there were $0.1-1$ rotavirus and <i>Campylobacter</i> , and $0.01-0.1$ <i>Cryptosporidium</i> oocyst; there was a die-off between harvest (actually the last irrigation) and consumption of $10^{-2}-10^{-3}$ for rotavirus and <i>Campylobacter</i> , and finally we allowed the 'pathogen constants' in the dose-response equations to vary by $\pm 25\%$.

he results of the 10.000-trial o simulations for the lettuce We calculated scenario. ction risks for the three index for various wastewater fined as single-log ranges of pers per 100 ml. Thus $10^7 - 10^8$ 100 ml represents untreated and, at the other extreme, 1-10ml is getting close, cally speaking, to drinking


As you can see in the table on the slide, for a wastewater quality of 10^3-10^4 *E. coli* per 100 ml the resulting median rotavirus infection risk is 10^{-3} per person per year, which is the design value that relates back to the 10^{-6} DALY loss per person per year. And it's good to note that the corresponding risks for *Campylobacter* and *Cryptosporidium* are two orders-ofmagnitude lower.

The table also confirms that the risks from using untreated wastewater are very high, practically a certainty for rotavirus infection, and not much lower for the other two. The table also tells us that it's not really worth irrigating with a wastewater of better quality than 10^3-10^4 *E. coli* per 100 ml as the resulting median infection risks are much lower than 10^{-3} per person per year.

This slide gives the results of Monte Carlo risk simulations that were done the reverse way to those on the previous slide – that is to say, we fixed the rotavirus infection risk at 10^{-2} , 10^{-3} and 10^{-4} per person per year and then, for each of these values, the computer program determined the required rotavirus reduction in log units. In this case no die-off between the last irrigation and consumption was considered and the footnote to the table gives the ranges of parameter values that we used for both lettuce and, as a root crop, onions.

The table shows that, for the design rotavirus infection risk of 10^{-3} per person per year, we need to get a 6-log unit reduction for lettuce and 7 for onions. These are the total reductions from raw wastewater to consumption.

22.	Lettuce consumption Watewater quality Median infection risk per person per year (E. coll per 100 m) Rotavirus Campylobacter Cyplosporidium 10 ⁶ -10 ⁷ 0.99 0.28 0.50 10 ⁶ -10 ⁷ 0.85 6.3 × 10 ⁻² 6.3 × 10 ⁻² 10 ⁶ -10 ⁷ 9.7 × 10 ⁻² 2.4 × 10 ⁻³ 6.3 × 10 ⁻² 10 ⁶ -10 ² 9.8 × 10 ⁻³ 2.6 × 10 ⁻⁵ 3.1 × 10 ⁻⁵ 10 ² 2.0 × 10 ⁻⁴ 5.6 × 10 ⁻⁹ 1.4 × 10 ⁻⁹ 4-log unit reduction by treatment, plus 2-3-log unit reduction due to die-off (part of QMRA assumptions) – i.e., a total reduction of 5-7 log units	Going back to the previous slide, we can see that to get to the design rotavirus infection risk of 10^{-3} per person per year, we need to have a 4-log unit reduction by treatment; that is to say from $10^7-10^8 E$. <i>coli</i> per 100 ml to 10^3-10^4 per 100 ml. But the assumptions we made for these Monte Carlo-QMRA calculations included, for rotavirus, a 2–3 log unit reduction due to die-off between the last irrigation and consumption. Therefore the total log unit reduction required is 4 from treatment plus 2–3 from die-off – that is, 6–7 log units.
23.	Pathogen reductions (log units)) achieved by health-protection control measures Control measure (bg units) Pathogen (bg units) Notes Wadevater treatment (bg units) 1-6 The required pathogen removal to be achieved by watewater measures a selector measures a selector participation 2 Localized impation (bg units) 2 Root cross on across seven to the seven to the achieved by watewater measures a selector participation 2 Localized impation (bg growing crosp) 2 Root cross on across seven the breast all grow just above, but consider the selector of meth-period across on cross with its soil. Localized impation (bg growing crosp) 2 Root cross on cross with a soil. Localized impation (bg growing crosp) 2 Root cross cross with the soil. Localized cross of difficient control 1 Use of more-periodicing records on cross with the soil. Difficient control 1 Use of more-periodicing across on cross on the control drecords directed introduction achieved directors context with the isout of director context with the isout of director context with the soil be at BO-100 m. Pathogen die off 0.5-7 Deffer for con sufface the or context context high prot and context with the soil in control across the induction achieved directore context with the soil in context distribution of context context and the matter. Produce wataling	In point of fact, die-off is just one of several post-treatment health-protection control measures. This table lists all these and the log unit pathogen reduction achieved by each of them.
24.	Pathogen reductions (log units) achieved by health-protection control measures Notes Centrol measure Pathogen (log units) Notes Wadesufer treatment 1-6 The required pathogen removal to be addressed by stateward or measures a selected (low growing group) 2 Use allowed irrigation (low growing group) 2 Root cross paint cross such as littuce that grow just above, but per lathies a selected (low growing group) 2 Localized irrigation (low growing group) 2 Root cross paint cross such as littuce that grow just above, but per lathies a selected (low growing group) 4 Soraying rights 1 the product second cols and cross such as future that grow just above, but per lathies a selected (low growing group) 6-7 log units for the product for RV inflection risk of 10-3 ppppy 6 Produce washing Produce cooking 2 Fourt, root cross control error cons for 10-3 ppppy for 10 cross paint per lathies and crossed cooling water until the food is control error cons	The point is that there has to be a total 6–7 log unit reduction which is partially achieved by treatment, with the balance made up by some combination of post- treatment control measures,
25.	Inegra A B C D E Robuction 7 Front Earl T 6 DQ W DIL T 5 DQ W DIL T 3 T T T T 1 DO DO T T 1 DO DO W W T 0 DO DO W W T 1 DO DO W W W 0 DO DO W W W 0 T T T T T 1 DO DO W Wasking of produce DI DI DI Die off: W W asking of produce DI DI DI Die off: W W Wasking of produce DI DI Die off: W Wasking of produce T DI DI Die off: W Wasking of produce T DI	like the examples shown here, and it's worth stressing that these are only examples. One of these combinations, the one on the far left, for root crops like onions, is a 4 log unit reduction by treatment, 2 due to die-off and 1 due to produce washing in clean water. Really the design engineer can choose any combination he or she chooses, and the ones shown here are not the only ones, nor necessarily the most common ones. You design, you choose!

30.	Leg., Break Parkingers These log unit reductions achieve the tolerable rotavirus infection risk of 10-3 pppy 4 9 4 9 5 9 4 9 6 4 9 7 9 4 9 8 9 4 9 9 4 9 9 4 9 9 4 9 9 3 9 9 3-log unit 9 1 3-log unit 9 1 3-log unit 9 1 3-log unit 9 10 3-log unit 9 11 9 12 3-log unit 9 13 9 14 9 15 10 16 10 17 10 18 10 19 10 10 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10	These log unit reductions achieve the tolerable rotavirus infection risk of 10^{-3} per person per year, for the fieldworkers.
31.	Leg, Reduction Parlog and Achieved the tolerable rotavirus infection risk of 10 ⁻² pppy 4 4 4 4 4 4 4 4 4 9 4 9 4 4 4 9 4 4 9 10 10 10 10 10 10 10 10 10 10	And, because they're for the fieldworkers, they have to be achieved solely by wastewater treatment, because the fieldworkers are directly exposed to the wastewater-contaminated soil.
32.	<section-header><section-header><list-item><list-item><list-item></list-item></list-item></list-item></section-header></section-header>	Finally, we come to helminth eggs, the eggs of Ascaris, Trichuris and the human hookworms, Ancylostoma and Necator. To protect the health of both the fieldworkers and the crop consumers WHO recommends a maximum count of 1 egg per litre of treated wastewater, although in the case of drip irrigation of high-growing crops, like tomatoes, no recommendation is necessary. This guideline value of ≤ 1 egg/l doesn't, however, protect children under the age of 15, so when these are exposed by working in, or playing in, wastewater-irrigated fields, additional control measures are needed – for example, regular deworming, either at home or at school. This helminth egg guideline is based on epidemiological data, mainly from studies in Mexico; so it wasn't necessary to use QMRA to derive the guideline.
© Duncan Mara 2006		