Design Manual for Waste Stabilization Ponds in Mediterranean Countries

Design Manual for WASTE STABILIZATION PONDS in Mediterranean Countries

Duncan Mara and Howard Pearson

Lagoon Technology International Leeds, England First published in 1998 by Lagoon Technology International Ltd., Newton House, Newton Road, Leeds LS7 4DN, England.

©Lagoon Technology International Ltd., 1998

All rights reserved.

No part of this publication may be reproduced, stored in any retrieval system, or transmitted, by any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the copyright owner.

ISBN 0951986929

British Library Cataloguing-in-Publication Data. A catalogue record for this book is available from the British Library.

Printed by University Print Services A division of Media Services at Leeds

Cover photograph: Facultative pond at Ben Slimane, Morocco (see Section 5.4)

DISCLAIMER

The European Investment Bank and the European Union bear no responsibility for, and are not in any way committed to, the views and recommendations contained in this Manual.

Contents

Fo Pr Ac Al	ix xi xiii xiv	
1.	Introduction 1.1 The need for wastewater treatment 1.2 Advantages of waste stabilization ponds	1 1 1
	1.3 About this Manual	4
2.	Wastewater treatment in WSP	8
	2.1 Types of WSP and their function	8
	2.1.1 Anaerobic ponds	8 9
	2.1.2 Facultative ponds 2.1.3 Maturation ponds	9 11
	2.2 BOD removal	11
	2.3 Pathogen removal	13
	2.3.1 Bacteria	13
	2.3.2 Viruses	14
	2.3.3 Parasites	14
	2.4 Nutrient removal	14
	2.4.1 Nitrogen 2.4.2 Phosphorus	14 15
	2.5 Environmental impact of WSP systems	15
	2.6 Perceived disadvantages of WSP	16
3.	WSP usage in Mediterranean Europe	19
	3.1 Portugal	19
	3.2 Spain	20
	3.3 France	21
	3.4 Greece	23
4.	WSP usage in the Eastern Mediterranean	26
	4.1 Turkey	26
	4.2 Cyprus	29
	4.3 Israel	31
	4.4 Jordan	34
5.	WSP usage in North Africa	36
	5.1 Egypt	36
	5.2 Tunisia	37
	5.3 Algeria	39
	5.4 Morocco	40
	5.5 Concluding remarks on WSP usage in	
	Mediterranean countries	42

6.	Pro	ocess	design of WSP	43	
	6.1	Efflu	ent quality requirements	43	
	6.2		gn parameters	44	
			Temperature and evaporation	44	
			Flow	44	
			BOD	44	
		6.2.4	Nitrogen	45	
			Faecal coliforms	45	
		6.2.6	Helminth eggs	45	
	6.3	Anae	robic ponds	45	
			tative ponds	47	
	6.5		ration ponds	49	
		6.5.1	Faecal coliform removal	49	
		6.5.2	Helminth egg removal	50	
			BOD removal	51	
			Nutrient removal	52	
	6.6	Proce	ess design <i>aide-mémoire</i>	53	
7	' .	Phys	sical design of WSP	55	
		7.1	Pond location	55	
		7.2	Geotechnical considerations	55	
		7.3	Hydraulic balance	57	
		7.4	Preliminary treatment	58	
		7.5	Pond geometry	59	
		7.6	Inlet and outlet structures	61	
		7.7	Pond geometry Inlet and outlet structures By-pass pipework Recirculation	62	
		7.8	Recirculation	62	
		7.9	Treebelt	63	
		7.10	Security	63	
		7.11	Operator facilities	64	
8	8.	Operation and maintenance			
		8.1	Start-up procedures	65	
		8.2	Routine maintenance	65	
		8.3	Staffing levels	66	
		8.4	Desludging and sludge disposal	67	
9		Mor	uitoring and evaluation	69	
J	•	9.1	Effluent quality monitoring	6 9	
		9.2	Evaluation of pond performance	70	
		9.2 9.3	Data storage and analysis	71	
		0.0			
10).		abilitation and upgrading	75	
			Rehabilitation	75	
			Upgrading and extending existing WSP	76	
		10.3	Algal removal	76	
11		Was	tewater treatment and storage reservoirs	78	
	•	11.1	Single WSTR system	78	
		11.2	Sequential batch-fed WSTR	78	
		11.3	Hybrid WSP-WSTR system	79	
12	,	ธณ.	iont rouso	81	
14	•		Jent reuse Microbiological quality guidelines	61 81	
		12.1 12.2	Microbiological quality guidelines Physicochemical quality guidelines	83	
		12.2 19.3	Agricultural reuse	83 84	
			Aquacultural reuse	85	
		1~.1	· - quadattatat i dade	50	

References	87	
Annex I WSP Process Design Examples	95	
1. Surface water discharge	95	
2. Restricted irrigation	97	
3. Unrestricted irrigation	97	
4. Wastewater storage & treatment reservoirs	100	
5. Fish culture	100	
Annex II Analytical Techniques	103	
1. Chlorophyll a	103	
2. Algal identification	104	
3. Sulphide	108	

Annex III Environmental Impact of WSP Systems 109

Foreword

The European Investment Bank is very pleased to present this Design Manual for Waste Stabilisation Ponds in Mediterranean Countries, which has been prepared by Lagoon Technology International Ltd. with financial support from the Mediterranean Environmental Technical Assistance Programme (METAP).

When METAP was launched in the late 1980's, one of the aims of the European Investment Bank was to help actions at both regional and country levels. Within the third METAP cycle, the Bank considered it important to include a study to analyse the economic and project preparation aspects of waste stabilisation ponds (WSP). The objective of this Manual is to encourage the development of WSP wherever this wastewater treatment technology is appropriate. It gives information about policy and institutional development as well as design and operational processes. The Manual should be used as a starting point for decisions on the convenience and desirability of using WSP whenever local circumstances are favourable for their adoption. The Bank hopes that in this way WSP technology will become more widely used throughout the Mediterranean region.

We would like to thank Professor Duncan Mara and Dr Howard Pearson for their cooperation, and also the Department of Infrastructure II of the Bank's Project Directorate whose idea this Manual was and who wished to see WSP included within the selection framework for wastewater treatment processes in the Region.

Christian Careaga

METAP Coordinator European Investment Bank August 1998

Preface

Waste stabilization ponds are an extremely appropriate and sustainable method of wastewater treatment in many situations in Mediterranean countries, and we hope that this Manual will serve to promote modern pond design in the Region. Of course design by itself is not enough: operation and maintenance are crucial, but fortunately with ponds this is very much simpler and requires less skilled labour than is the case with electromechanical treatment processes. Guidance is also given on pond monitoring and evaluation, and this can lead to improved design – there is no substitute for local data. Sometimes, because of more rigorous legislation or neglect, pond systems need upgrading or rehabilitation, and this is also discussed.

In several countries of the Region wastewater is generally too valuable to waste, and the reuse of pond effluents for crop irrigation or for fish culture is very important in the provision of high quality food. In semi-arid zones, the use of wastewater storage and treatment reservoirs is advantageous as it permits the whole year's wastewater to be used for irrigation, thus enabling the irrigation of a much larger area and consequently much higher crop production.

Duncan Mara and Howard Pearson

Leeds, England June 1998

Acknowledgements

We are very grateful to many people who have helped us in writing this Manual. We would especially like to thank Mr Christian Careaga and Mr Jean-Marc Arnoux at the European Investment Bank in Luxembourg, and also the following:

Mediterranean Europe

Portugal: Dra Helena Marecos and Ms Alexandra Rodrigues, Laboratório Nacional de Engenharia Civil, Lisbon.

Spain: Professor Francisco Torrella, Universidad de Murcia.

France: Ms Catherine Boutin, CEMAGREF, Lyon; Mr Jean Louis Crabos and Mr Fabian Foster, Ecosite de Mèze.

Greece: Mr Kostas Tsagarakis and Mr Georgios Alexiou, University of Leeds.

Eastern Mediterranean

Turkey: Eng. Ayhan Durusu, Iller Bank, Ankara; Dr Meltem Sarioglu, Cumhuriyet University, Sivas.

- *Cyprus*: Mr Dinos Constantinou, City Engineer, Nicosia; Mr Eugene Nikolaou, Nicosia Sewerage Board.
- *Israel*: Professor Hillel Shuval, Professor Badri Fattal and Ms Yael Lampert, Hebrew University of Jerusalem.
- *Jordan*: Dr Muwaffaq Saqqer, Water Authority, Ministry of Water and Irrigation, Amman.

North Africa

- *Tunisia:* Mr Abderrahmen Gannoun and Mr M Z Ben Hassine, Office National del'Assainissement, Tunis; Dr Khalil Attia and Mrs Amal Fantar, Centre International des Technologies de l'Environnement de Tunis, Tunis; Mr Mohsen Tounsi, Société d'Ingénierie Rurale, Urbaine et Sanitaire, Tunis.
- *Algeria:* Ms Lamia Lehtihet, Direction des Grands Aménagements et Infrastructures Hydrauliques, Ministère de l'Equipement et de l'Aménagement du Territoire, Algiers.
- *Morocco:* Mr Lahoucine Tijani, Mr Abdelhamid Zryouil and Mr Ahmed Segten, Office National de l'Eau Potable, Rabat; Mr Moncef Ziani and Mr Ahmed Chalabi, Conseil Ingénierie et Développement, Rabat.

ABBREVIATIONS

- BOD Five-day, 20°C biochemical oxygen demand
- Chl Chlorophyll
- Chemical oxygen demand COD
- Dry weather flow DWF
- Food and Agriculture Organization FAO
- FC Faecal coliform(s)
- Sodium absorption ratio SAR
- SS Suspended solids
- TWL Top water level
- World Health Organization WHO
- WSP Waste stabilisation pond(s)
- Wastewater storage and treatment reservoir(s) WSTR

PRINCIPAL NOTATION

- A Pond area
- BOD contribution per caput per day; pond breadth B
- С Concentration
- D Pond depth
- е Net evaporation
- k First-order rate constant
- BOD concentration; pond length L
- Number of FC Ν
- Number of maturation ponds n
- Р Population
- Q Flow
- s T Seepage
- Temperature
- VVolume
- Mean hydraulic retention time θ
- BOD surface loading rate λ_s
- BOD volumetric loading rate λ_v

Subscripts

- а Anaerobic
- Effluent e
- f Facultative
- Fishpond fp
- Influent i
- Maturation m