WASTE STABILIZATION PONDS 6a Excreted pathogen removal mechanisms

1.	School Of Epidemic School Of Epidemic School Of Epidemic <	This presentation is on the mechanisms of excreted pathogen removal in waste stabilization ponds.
2.	Removal of excreted pathogens in deep ponds in series in Northeast Brazil, 1984-1985, 25 °C Σθ = 21 days Raw www A6 F8 M4 M5 M6 Retention time - 1 5 5 5 5 F. coliforms 2E7 4E6 8E5 2E5 3E4 7E3 Campylobacters 70 20 0.2 0 0 0 Salmonellae 20 8 0.1 0.02 0.01 0 Enteroviruses** 1E4 6E3 1E3 400 50 9 Rotaviruses** 800 200 70 30 10 3 Bacterial nos. per 100 ml *** Viral nos. per 10 litres	Normally, when we monitor the performance of a pond system, we just determine the removal of an indicator bacterium, such as <i>E. coli</i> or faecal coliforms. The slide shows the results of some work we did quite a few years ago on a series of ponds in northeast Brazil. The pond system comprised a 1-day anaerobic pond followed by a facultative and three maturation ponds, each with a retention time of 5 days. We monitored faecal coliforms, two bacterial pathogens, salmonellae and campylobacters; and two lots of excreted viruses, enteroviruses and rotavirus. The faecal coliforms were reduced from 2×10^7 per 100 ml in the raw wastewater to 7000 per 100 ml in the final effluent, and the campylobacters from 70 per 100 ml to zero (well, at least undetectable) in the effluent of the first maturation pond. The salmonellae were reduced from 20 per 100 ml to zero (undetectable, again) in the effluent of the third maturation pond, although I suspect the removals of the campylobacters and salmonellae were similar; it's just that we're able to detect very small numbers of salmonellae, but not of campylobacters.

	Removal of excreted pathogens in deep ponds in series in Northeast Brazil, 1984-1985, 25 °C $\boxed{\Sigma\theta = 21 \text{ days}}$ $\boxed{Raw}_{w'w}$ A6F8M4M5M6Retention time-15555F. coliforms2E74E68E52E53E47E3Campylobacters70200.2000Salmonellae2080.10.020.010Enteroviruses**1E46E31E3400509Rotaviruses**8002007030103Bacterial nos, per 100 ml** Viral nos, per 10 litresSlide repeated for clarity	The enteroviruses were reduced from 10,000 per 10 litres to just under 10 per 10 litres in the final effluent, and the rotaviruses from 800 per 10 litres to around 3 per 10 litres. These results show that when the effluent contained ~7000 faecal coliforms per 100 ml, there were no campylobacters, no salmonellae and only very small numbers of viruses.
3.	Removal of Vibrio cholerae O1 in WSP Northeast Brazil, 25–27°C Series of 10 ponds (1-day anaerobic pond followed by nine 2-day ponds) Sample V. cholerae FC BOD Chl.a (per litre) (/100 ml) (mg/l) (µg/l) Wastewater 485 2E7 215 An. pond 28 8E6 79 Fac. pond 8 3E8 63 253 1st mat. pond 3 1E6 53 113 2nd 8 5E5 43 70 3rd 3 2E5 36 115 4th 11 days 0 6E4 31 113 It's clear from these results that most cholerae are removed in the anaerobic pone but why is this? To answer this, we dis some lab. work in Brazil and found that cholerae is very sensitive to quite lo sulphide concentrations, ~3 mg/l. I anaerobic ponds the sulphide concentration is ~10–12 mg/l, so there's more than enoug to kill off most of the cholera vibrios.	We were also able to study the removal of <i>Vibrio cholerae</i> , the causative agent of cholera, soon after the current cholera pandemic showed up in northeast Brazil in the 1980s. The pond system we had was a little odd: a 1-day anaerobic pond followed by several 2-day ponds. The number of <i>V. cholerae</i> was just under 500 per litre in the raw wastewater, and most were removed in the anaerobic pond, and thereafter a little in each of the <i>V. next five ponds, becoming</i> d, undetectable in the effluent of the fourth 2-day pond, after a total <i>V. retention time of 11 days. At this</i> w point the faecal coliform count was fo0,000 per 100 ml. I. [Continued opposite]
4.	Removal of intestinal nematode eggs in a series of five ponds, Northeast Brazil, 25 °C Retention time (days) Eggs per litre Raw w'w - 804 A1 6.8 29 F1 5.5 1 M1 5.5 0 M2 5.5 0 M3 5.8 0 Raw w'w - 1489 A1 2.0 45 F1 1.6 18 M1 1.6 5 M3 1.6 2	We also monitored the removal of human intestinal nematode eggs, the eggs of <i>Ascaris</i> , <i>Trichuris</i> and the human hookworms; these are the geohelminths which comprise Categ- ory C of the unitary environmental classification of water- and excreta- related communicable diseases. Most of these eggs were removed in the anaerobic pond, with the remaining small numbers being gradually reduced in the subsequent ponds.

This somewhat complicated slide tells us how the values of several parameters in the effluent of a primary facultative pond, one of the ones we studied in northeast Brazil, varied over a 24-hour period. The *x*-axis is <u>time</u>, starting at 8 am one day and finishing at 8 am the following day.

In the box at the bottom of the central diagram we're plotting algal biomass as chlorophyll *a*, the open triangles, and faecal coliform numbers, the solid triangles. You can see that when the chlorophyll is low (at night), faecal coliform numbers are high; and *vice versa*, albeit with a slight lag in the decrease of faecal coliforms. So high chlorophyll = high algae and = low faecal coliforms. So are the algae doing something to kill off the bacteria?

The box immediately above the bottom box gives the data for BOD and suspended solids. Both these peak at the same time as the algal chlorophyll peaks; and this is what we would expect as most of the effluent BOD and suspended solids is due to the algae in the effluent. In the box second from the top we see the same peak with total phosphorus, the solid diamonds, but not of course for the other two parameters in this box. ammonia and soluble phosphorus, as these are not associated with the algae.

Now in the top box we have the data for temperature, the solid circles; for pH, the solid triangles; and for dissolved oxygen, the open triangles - our DO meter had a maximum reading of 20 mg/l, which is why there's no peak shown for DO, although clearly in reality there was one. All three of these parameters peaked at the same time as the chlorophyll, and this tells us that algal activity increases with increasing temperature, and that both pH and DO increase with increasing algal activity; and, as we've seen already, increasing algal activity means a fall in faecal coliform numbers. We can't be sure from the data here, but it's likely that either the high pH or the high DO, or both, are responsible for the decrease in faecal coliform numbers.

