WASTE STABILIZATION PONDS 4 Facultative ponds

1.	<image/> <image/> <image/> <image/> <image/> <section-header></section-header>	This presentation is on facultative waste stabilization ponds.
2.	Facultative ponds Derminology: Primary fac. ponds: receive raw wastewater (after screening and grit removal) Secondary fac. ponds: receive effluent from anaerobic ponds (or septic tanks, UASBs; or from settled sewerage networks)	We use the term 'primary' facultative pond for fac. ponds that receive raw wastewater, and 'secondary' facultative pond for those receiving the effluent from an anaerobic pond or other settling device such as septic tanks, or the solids interceptor tanks used in settled sewerage.
3.	Profuse presence of various species of mainly <u>motile</u> microalgae (~500-1000 µg chlorophyll <i>a</i> /l) So facultative ponds are (or should be) dark green	Facultative ponds should be dark green in colour as there is a profuse growth in them of mainly motile micro-algae. In a well performing facultative pond the algal concentration, expressed in terms of the main algal photosynthetic pigment, is around 500–2000 µg of chlorophyll <i>a</i> per litre. ^[*]
4.	 algal-bacterial mutualism: algae produce O₂, used by heterotrophic bacteria which produce CO₂ which is used by the algae. thin sludge layer in facultative ponds that receive raw wastewater (intense anaerobic digestion & CH₄ production). effluent BOD mainly due to algae (70–90%). This "algal" BOD is very different from "wastewater" BOD. 	In facultative ponds there is a mutualistic relationship between the algae and the heterotrophic bacteria: the algae produce oxygen which is used by the bacteria, and the bacteria produce carbon dioxide which is used by the algae. There's a sludge layer in primary fac. ponds and there's intense anaerobic digestion in this layer with copious biogas production.
		mainly due to the algae in it, and this algal

		BOD is very different from 'normal' wastewater BOD, and we'll come back to this shortly.
5.	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c	These photomicrographs show some of the algae commonly found in fac. ponds: <i>Chlamydomonas</i> , <i>Chlorella</i> , <i>Euglena</i> and <i>Scenedesmus</i> .
6.	Algae produce O_2 , but only during daylight hours \therefore diurnal variation in DO levels in pond: $\int_{0}^{10} \int_{0}^{10} \int_{0}^{10}$	Algae produce oxygen but only during daylight hours. This means there is a diurnal variation in the dissolved oxygen levels in the pond, and the figure on the slide shows this for two depths, 10 and 80 cm below the pond surface, and you can see that the diurnal variation is much greater at 10 cm than at 80 cm.
7.	Diurnal variation of pH as well: • Algal photosynthesis consumes CO_2 • If CO_2 consumption faster than CO_2 supply by bacterial metabolism or from atmosphere, then bicarbonate and carbonate ions dissociate: $2HCO_3^- \rightarrow CO_3^{2-} + H_2O + CO_2$ $CO_3^{2-} + H_2O \rightarrow CO_2 + 2OH^-$ CO_2 used by algae, OH ⁻ accumulates, so pH rises	As a result of algal photosynthesis there is a diurnal variation of pH, as well as of dissolved oxygen. This is because when the algae are photosynthesizing rapidly their CO_2 demand exceeds its supply from bacterial metabolism and from the atmosphere, so carbonate and bicarbonate ions in the pond water dissociate to provide more CO_2 , but also hydroxyl ions $[OH^-]$, as shown by the equations on the slide. The CO_2 is used by the algae and the hydroxyl ions accumulate, so the pH rises.
8.	 pH can rise above 9, even 10. Important for die-off of faecal bacteria: pH >9.4 is rapidly lethal to faecal bacteria, including <i>E. coli</i> – main exception is <i>Vibrio cholerae</i> (which is killed off by sulphides in anaerobic ponds) 	As a result the in-pond pH can rise to above 9 or even above 10, and this is very important for the die-off of faecal bacteria. An in-pond pH of 9.4 and above is rapidly lethal to faecal bacteria, with the exception of <i>Vibrio cholerae</i> which easily tolerates these high pH's, but fortunately it's quickly killed by the sulphides in anaerobic ponds.

9.	Depth of facultative ponds • Usually 1–2 m (commonly 1.5 m) • If <0.9 m, then problem of emergent plants and consequent mosquito breeding: <-0.9 m Shaded habitat for mosquito breeding	The wastewater depth in fac. ponds is somewhere between 1 and 2 m, with 1.5 m being most common. Depths less than 1 m aren't recommended because there's the problem of rooted plants growing up through the pond, and they then provide a shaded habitat for mosquito breeding – which we certainly don't want.
10.	Length-to-breadth ratio of fac. ponds 2–3 to 1 if pond receives raw wastewater [if more than this, sludge accumulates near inlet (rather than being reasonably well distributed across pond bottom) and can → emergent sludge mounds which may block the inlet] can be >3 to 1 if pond receives anaerobic pond effluent	The length-to-breadth ratio of primary fac. ponds is 2 or 3 to 1, certainly no more than 3 to 1 as there would be significant sludge accumulation near the inlet, and these sludge mounds can eventually block the inlet. For secondary fac. ponds the L:B ratio can be greater than 3 to 1, but it shouldn't be less than 2 to 1.
11.	Design of Facultative Ponds Many methods – mostly bad! The best is based on: Surface BOD loading rate	So how do we design facultative ponds? There are quite a few design methods, but few of them are any good. The best is based on surface BOD loading ,
12.	SURFACE BOD LOADINGλ _s , kg BOD/ha dayL _i = influent BOD, mg/l*λ _s = 10L _i Q/AQ = flow, m³/dayImportant equation!A = pond area, m²NOTE UNITS!! * = g/m³Important equation!Design loading is a fn of temperature:	which is the amount of BOD applied to the fac. pond surface area per day, and its units are kg BOD per ha per day, and it is denoted by the symbol λ_s . So, if the influent BOD (L_i) is in mg/l, i.e. g/m ³ , the flow (Q) in m ³ /day and the area (A), in m ² , then: $\lambda_s = 10L_iQ/A$ We end up with a '10' in this equation as there are 10 ³ g in a kg and 10 ⁴ m ² in a ha. The value we use for λ_s depends on temperature, the design temperature we're using.

13.	• McGarry and Pescod equation for maximum loading rate (ie, envelope of failure): $\lambda_{s} = 10(1.054)^{T}$ where λ_{s} is in lb/acre day and T in °F In SI units: $\lambda_{s} = 60(1.099)^{T}$ where λ_{s} is in kg/ha day and T in °C	The McGarry and Pescod equation for the maximum BOD loading rate on fac. ponds is: $\lambda_{\rm S} = 10(1.054)^T$ where $\lambda_{\rm S}$ is in the rather unhelpful units of pounds of BOD per acre per day and <i>T</i> is the design temperature in °F. Using SI units their equation becomes: $\lambda_{\rm S} = 60(1.099)^T$ where the units are now kg per ha per day and °C.
14.	Arc Garry & Pescod's envelope of failure	The McGarry and Pescod equation is really an envelope of failure . The figure on the slide shows the data points on which their equation was based: the black dots represent fac. ponds that were working OK, and the open circles represent failed ponds, ponds that had become anaerobic.
15.	McGarry & Pescod's envelope of failure o = failed pond HOWEVER: Shape of McG&P equation greatly influenced by: (a) group of failure points at ~0 °C, and (b) group of "OK" points at atypically high BOD loadings (>>500 kg/ha d)	However, the shape of the McGarry and Pescod equation is influenced very strongly by the group of failure points around 0°C and the group of reportedly satisfactory ponds operating at very high BOD loading rates, above about 550 kg per ha per day.
16.	 But ponds should not be designed to operate a their point of failure! Therefore various design equations have been introduced Best is Mara's global design equation: 	But we don't design ponds to operate at their point of failure, so we can't use the McGarry and Pescod equation for design, but we can use it as a benchmark for a design equation, and the best design equation to use is the Mara global design equation.

17.	MARA'S GLOBAL DESIGN EQUATION $A_s = 350(1.107 - 0.002T)^{T-25}$ Image:	This states that the design value of λ_s is given by: $350 \times (1.107 - 0.002T)^{T-25}$ In this equation the term raised to, in this case, the power <i>T</i> -25 is not a simple Arrhenius constant, but a linear function of <i>T</i> . This was done to make the equation valid over a wide range of temperature, from 8°C to over 30°C, although there are few, if any, places in the world where we would use a design temperature of over 30°C.
18.	http://www.interview.org/files	This figure shows the McGarry and Pescod equation and the Mara equation and you can see there's a sufficient factor of safety in the Mara equation at all design temperatures.
19.	Minimum retention time: • Min $\theta_f = 4$ days • If calculated value of θ_f is <4 days, then take $\theta_f = 4$ days, and recalculate the area from: $A_f = Q \theta_f / D_f$ • Take $D_f = 1.5$ m	The mean hydraulic retention time, defined as V/Q in fac. ponds should not be less than 4 days. So if its calculated value is <4 days, we have to use a value of 4 days and recalculate the area, as shown on the slide, assuming a depth of 1.5 m. [Presentation #7 sets out in detail the fac. pond design procedure.]
20.	BOD removal in facultative ponds $\lambda_r = a\lambda_s + b$ $\lambda_r = BOD removal, kg/ha day$ $= 10(L_i - L_e)Q/A$ • McGarry & Pescod's equation: $\lambda_r = 0.725 \lambda_s + 10.75$ close to zero	McGarry and Pescod also looked at BOD removal in facultative ponds, and they found that BOD removal expressed in kg per ha per day was a linear function of the BOD loading rate, as shown by the equations on the slide. Their equation is: $\lambda_R = 0.725\lambda_S + 10.75$ and it's worth noting that the constant 10.75 is in fact close to zero.

	McGarry & Pescod's data:	
21.	$r_{\rm eq}$	This figure shows the plot of McGarry and Pescod's data. BOD removal in kg per ha per day is on the y axis, and BOD loading in the same units is on the x axis, and you can see that the linear relationship is a very good one.
		We now usually obtain a relationship of
22.	$\lambda_r = \alpha \lambda_s$	the form: $\lambda_{\rm P} = a \lambda_{\rm S}$
	ie, BOD removal is some 70–80%	$n_{\rm R} - u n_{\rm S}$
	 McGarry & Pescod's data were for unfiltered effluent samples ie, they included the BOD of the 	where <i>a</i> is somewhere between 0.7 and 0.8 – that is to say, the BOD removal is around $70-80\%$.
	algae in the effluent	The effluent BOD data that McGarry and
		Pescod used were obtained from un filtered samples $-$ i.e., they included the BOD of the algae in the effluents.
23.	For WSP effluents: Filtered or unfiltered BOD?	This raises the question: should we use filtered or unfiltered BOD for pond effluents? Unfiltered BOD includes the algal BOD and filtered BOD excludes it. We filter the effluent sample using the same filter paper as we use for measuring suspended solids. This will, of course, remove any non-algal suspended solids, but this introduces only a small error as the algae contribute 70–90% of the BOD in pond effluents.
24.	European Union: Urban Waste Water Treatment Directive (91/271/EEC) For WSP effluents: ≤25 mg filtered BOD/I and ≤150 mg SS/I	In the European Union the quality of treated wastewaters is governed by the Urban Waste Water Treatment Directive, and this lays down a general BOD requirement of no more than 25 mg/l, but for pond effluents this is filtered BOD. Compliance with the Directive's require- ment for suspended solids per litre is optional, except for ponds: pond effluents have to have no more than 150 mg suspended solids per litre.

25.	European Union: Urban Waste Water Treatment Directive (91/271/EEC)*****For WSP effluents: ≤25 mg filtered BOD/I and ≤150 mg SS/IIf OK in the EU, why not in developing countries ???	So, we have to ask the question: if this is OK in the European Union, why not in developing countries? This is always something that should be discussed with the local environmental regulator.
26.	Facultative Pond Performance in Northeast Brazil, 25°C (June 1977- December 1981): BOD removal percentages: variation with λsBOD loading (kg/ha d)Unfiltered BOD removal (%)162842557932277425735297457774	This table gives the percentage BOD removals obtained at various BOD loadings, from around 160 to nearly 600 kg per ha per day, on primary facultative ponds in northeast Brazil, at an in-pond temperature of around 25°C.
27.	Facultative Pond Performance in Northeast Brazil, 25°C (June 1977- December 1981): BOD removal percentages: variation with Å ₃ BOD loading Unfiltered BOD (kg/ha d) removal (%) 162 84 255 79 322 77 425 73 577 74 All seemingly good removals. So why choose a design loading of 350 kg/ha day, and not higher?	Now, these percentage BOD removals are all pretty good, so why was a design loading of 350 kg per ha per day chosen for 25°C, and not a higher one?
28.	 □ 350 kg/ha day chosen as design loading because of stability of algal population □ Algal biomass conc. (as chlorophyll <i>a</i>) becomes very low at λ_s >400 kg/ha day [25 °C] □ See Figure 	We chose 350 kg per ha per day as the design loading for 25°C on the basis of the stability of the algal population in the pond, as we found that at this temperature the algal biomass concentration, measured as chlorophyll <i>a</i> , became very low when the BOD loading was above ~400 kg per ha per day,

