
## WASTE STABILIZATION PONDS 2 Introduction 2

| 1. | Image: Natural Wastewater Treatment & Reuse   Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Treatment & Reuse Image: Natural Wastewater Trea | This is the second introductory pres-<br>entation on waste stabilization ponds.                                                                                                                                                                                                                                                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | WASTE STABILIZATION PONDS<br>Shallow, generally rectangular lakes,<br>usually arranged in a series of:<br>Anaerobic,<br>Facultative, and<br>Maturation ponds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ponds are shallow, generally rectangular,<br>'lakes' arranged in a series of anaerobic,<br>facultative and maturation ponds                                                                                                                                                                                                                                                                                 |
| 3. | WASTE STABILIZATION PONDS<br>Shallow, generally rectangular lakes,<br>usually arranged in a series of:<br>Anaerobic,<br>Facultative, and<br>Maturation ponds<br>* First two types mainly for BOD removal,<br>last two for excreted pathogen removal<br>* Algae in last two types *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Anaerobic and facultative ponds are<br>mainly for BOD removal, and excreted<br>pathogen removal occurs mainly in<br>facultative and maturation ponds, although<br>some BOD removal occurs in maturation<br>ponds and some pathogen removal in<br>anaerobic ponds.<br>Algae occur in facultative and maturation<br>ponds, but hardly ever in anaerobic ponds.                                                |
| 4. | Other types: Macrophyte ponds*<br>High-rate algal ponds*<br>Polishing ponds<br>(≡ maturation ponds)<br>* Not recommended!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | There are a few other types of ponds, such<br>as macrophyte ponds and high-rate algal<br>ponds, but these cannot be recommended<br>for general use. There are also 'polishing'<br>ponds, and these are essentially maturation<br>ponds used to improve the quality, and<br>commonly the microbiological quality, of<br>the effluent from a conventional, electro-<br>mechanical wastewater treatment plant. |

| 5. | Other types: Macrophyte ponds*<br>High-rate algal ponds*<br>Polishing ponds<br>(≡ maturation ponds)         * Not recommended!         RETENTION TIME in pond series: depends<br>on climate (temperature), but in general<br>~5–50 days<br>(in conventional WWTW ≤1 day)         & Advantages of WSP                                                                                                             | The hydraulic retention time in a pond<br>system is anywhere between, very<br>typically anyway, 5 and 50 days. This is<br><i>much</i> longer than in conventional works<br>where the retention time is generally well<br>under a day.                                                                                                                                                                                                                                                                                                                                                                         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. | <ol> <li>Usually the <u>CHEAPEST option</u> <ul> <li>both in terms of capital and O&amp;M costs.</li> </ul> </li> <li><u>VERY HIGH removals of excreted pathogens:</u> <ul> <li>up to 6 log<sub>10</sub> unit reduction of excreted bacteria</li> <li>up to 4 log<sub>10</sub> unit reduction of excreted viruses</li> <li>100% removal of helminth eggs &amp; &gt;90% of protozoan cysts</li> </ul> </li> </ol> | usually the cheapest, both to construct and<br>to operate and maintain.<br>They can achieve <i>very</i> high removals of<br>excreted pathogens. For example, up to a<br>six $log_{10}$ unit reduction of excreted<br>bacteria (that's a removal of 99.9999<br>percent, with each of these nines being a<br>significant figure); up to a four log unit<br>reduction of excreted viruses; and 100<br>percent removal of helminth eggs, and<br>generally over 90 percent removal of<br>protozoan cysts and oocysts.                                                                                              |
| 7. | Advantages of WSP (continued)  4. VERY simple O&M – only unskilled (but<br>supervised) labour needed.  4. Good resistance to shock hydraulic &<br>organic loads.  5. Good resistance to heavy metals.                                                                                                                                                                                                            | Ponds are very simple to operate and<br>maintain, and only unskilled (but<br>supervised) labour is needed for this.<br>Because of their large size they have<br>very good resistance to shock loads, both<br>hydraulic and organic.<br>And they have excellent resistance to<br>heavy metals, up to at least a mixed heavy<br>metal content of 30 mg per litre.                                                                                                                                                                                                                                               |
| 8. | Comparative Costs<br>Arthur (1983) World Bank Technical Paper #7<br>Case study: Sana'a, Yemen<br>Population: 250,000; flow:120 lcd; BOD: 40 gcd;<br>design temp: 20°C; FC: 2 ×107 per 100 ml.<br>Effluent:<br>≤25 mg/l BOD, ≤104 FC per 100 ml<br>Opportunity cost of capital (OCC): 12%<br>Land cost: US\$ 5 per m <sup>2</sup> or 'discount rate'<br>Note: OCC & land cost were varied                         | We're now going to look at a case study<br>developed by Jim Arthur for the World<br>Bank in the early 1980s. He compared<br>four different wastewater treatment<br>processes to treat the wastewater from the<br>city of Sana'a in the Yemen Arab<br>Republic.<br>Arthur designed these systems for a pop-<br>ulation of 250,000, a wastewater flow of<br>120 litres per person per day and a BOD<br>contribution of 40 grams per person per<br>day. The final effluent was to have no<br>more than 25 mg/l BOD and below 10,000<br>faecal coliforms per 100 ml.<br>Initially Arthur used a discount rate, or |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | opportunity cost of capital, of 12 percent and a land price of 5 US dollars per $m^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | Comparative Costs<br>Arthur (1983) World Bank Technical Paper #7<br>Case study: Sana'a, Yemen<br>Population: 250,000; flow:120 lcd; BOD: 40 gcd;<br>design temp: 20°C; FC: 2 ×10 <sup>7</sup> per 100 ml.<br>Effluent:Now better to use \$1000 FC/100 ml<br>\$25 mg/l BOD, \$10 <sup>4</sup> FC per 100 ml<br>Opportunity cost of capital (OCC): 12%<br>Land cost: US\$ 5 per m <sup>2</sup> or 'discount rate'<br>Note: OCC & land cost were varied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [Actually, if we were doing these calculations now, rather than, as Arthur did, in the 1980s, we'd most likely use a final faecal coliform count of 1000 per 100 ml, and not 10,000 per 100 ml.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10. | Different systems designed to produce similar<br>quality effluent (ie, to compare like with like):Image: system for OCC = 12%<br>and land cost<br>= \$5 per m2Net<br>present worth<br>(US\$ million)Land<br>area<br>(ha)Image: www.system for system for the system for | Arthur designed his four systems to<br>produce effluents which were closely<br>similar. So the aerated lagoon system was<br>designed with maturation ponds, and the<br>oxidation ditch and biofilters were<br>followed by effluent chlorination, in order<br>to get the FC count the same as that<br>produced by ponds; that is, to below<br>10,000 per 100 ml.<br>What Arthur did next was to compare<br>the costs of the four systems, in net present<br>value (or net present worth) terms. Ponds<br>were the cheapest at an NPV of just over 5<br>million US dollars; the next cheapest was<br>the oxidation ditch at just under 6 million<br>dollars; and the other two were more<br>expensive. The figures in the table are for<br>a discount rate of 12 percent and a land<br>price of 5 dollars per m <sup>2</sup> . |
| 11. | Arthur's results:<br>NPV vs discount rate<br>– for a land price of US\$ 5 per m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | He then allowed the discount rate to vary<br>while keeping the land price constant at 5<br>dollars per m <sup>2</sup> . His figure, reproduced in<br>this slide, shows that ponds were cheapest<br>up to a discount rate of somewhere<br>between 15 and 16 percent; for higher<br>rates, the oxidation ditch was cheapest.<br>He then repeated this for land prices up<br>to 15 dollars per m <sup>2</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                 |



| 16. | Land for WSP is an investment<br>Concord, CA<br>1955: \$50,000 per ha<br>1975: \$370,00 per ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | So land bought for ponds is an investment,<br>and a really good example of this has been<br>reported for the city of Concord in<br>California. The city bought land for ponds<br>in 1955 for 50,000 dollars per ha, and by<br>1975, twenty years later, it was worth<br>370,000 dollars per ha.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17. | Land for WSP is an investment         Concord, CA         1955: \$50,000 per ha         100: \$100 herric \$100 her | <ul> <li>Inflation in the US during this period was more or less exactly 100 percent, so 50,000 dollars in 1955 was equal to 100,000 dollars in 1975; and thus the profit in real terms was 370,000 dollars minus 100,000 dollars, or 270,000 dollars per ha.</li> <li>And, of course, it's very easy to convert the land from ponds to some other use – an industrial estate, for example.</li> <li>In developing countries conventional wastewater treatment processes, such as activated sludge, have several major disadvantages.</li> <li>The first is cost, and we can say that their costs are always very high, with a high requirement for foreign exchange. Secondly, to operate and maintain them properly requires skilled labour – labour that would be better employed in local manufacturing industries, for example. And thirdly, they only achieve a 90–99 percent removal of excreted pathogens.</li> </ul> |
| 19. | Raw wastewater:<br>107–10 <sup>8</sup> faecal coliforms per 100 ml<br>• 90–99% removal means:<br>Final effluent:<br>10 <sup>5</sup> –10 <sup>7</sup> faecal coliforms per 100 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A 90–99 percent removal of BOD would<br>be excellent, but for faecal coliforms, for<br>example, it's actually rather poor. Why?<br>Because raw wastewater contains between<br>$10^7$ and $10^8$ FC per 100 ml, so a removal<br>of 90–99 percent means that the final<br>effluent would contain somewhere<br>between $10^5$ and $10^7$ FC per 100 ml.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 20. | Raw wastewater:107-108 faecal coliforms per 100 ml• 90-99% removal means:Final effluent:105-107 faecal coliforms per 100 ml\$\$0 90-99% removal is pretty close to zero! | So, really, a 90-99 percent removal of excreted bacteria is pretty close to zero.                                                                                                                                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21. | Oxidation Ditch, near Hanoi<br>Ocaupalied by 4 retors                                                                                                                    | This slide shows an oxidation ditch<br>serving a small town near Hanoi in<br>Vietnam. The oxygen required for BOD<br>removal is supplied by four rotors,                                                              |
| 22. | But installed power only 2 kW,<br>and power not normally switched on!                                                                                                    | but the installed power was only 2 kW,<br>and, to make matters worse, the power is<br>not normally switched on (this is actually<br>quite common as the local authority can't<br>afford to pay the electricity bill). |
| 23. | • So was an oxidation ditch the best choice for wastewater treatment in this case?                                                                                       | So we have to ask the question: Was an oxidation ditch the best choice in this case?                                                                                                                                  |

| 24.                | <image/>                                                                                                                                                                                                   | And the answer is a resounding No.                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25.                | Natural vs Conventional<br>Wastewater Treatment<br>*Basically a choice between<br>LAND and ELECTRICITY:<br>Money spent on land is an<br>investment<br>Money spent on electricity is<br>money gone for ever | When we are comparing natural wastewater treatment, in ponds for example, with conventional electro-<br>mechanical treatment such as activated sludge, the choice really boils down to a choice between land and electricity. And we have to remember that money spent on land is an investment, but the money you spend on electricity is money gone forever – you just don't see it again! |
| © Duncan Mara 2006 |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              |