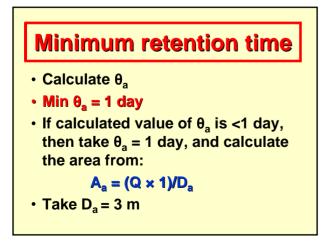
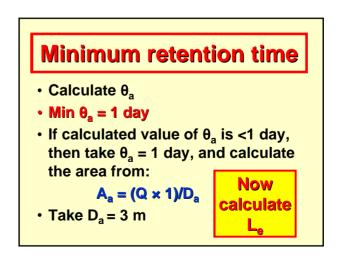
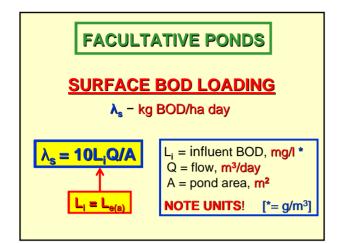
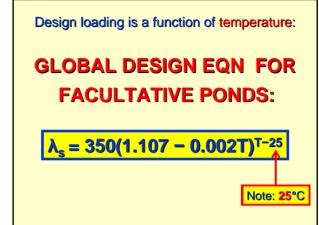

#### Waste Stabilization Ponds

# **Design Summaries**


- 1. Anaerobic ponds
- 2. Facultative ponds
- 3. Maturation ponds

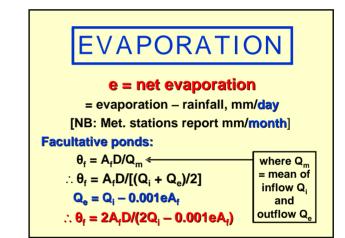

## **Design temperatures**

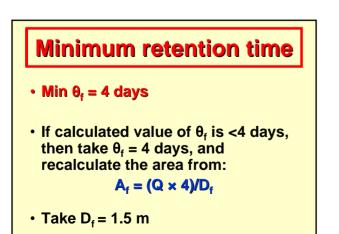

- 1. Anaerobic & facultative ponds: – mean air temperature of coldest month
- 2. Maturation ponds (to achieve required *E. coli* removal):
  - mean air temperature of coolest month in irrigation season

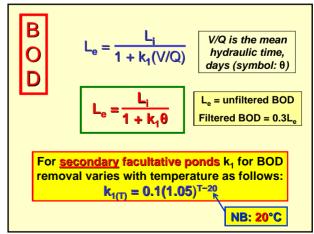


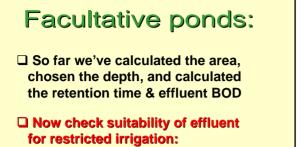

| Design | BOD <sub>5</sub> | Percentage |
|--------|------------------|------------|
| temp.  | loading          | BOD        |
| (°C)   | (g/m³ day)       | removal    |
| ≤10    | 100              | 40         |
| 10–20  | 20T – 100*       | 2T + 20*   |
| 20–25  | 10T + 100*       | 2T + 20*   |
| >25    | 350              | 70         |







#### Facultative Pond Design PROCEDURE

- 1. Calculate area from BOD loading [ = f(T)]
- 2. Choose depth (~1.5 m)
- 3. Calculate retention time, taking net evaporation into account - see →
- 4. Calculate **unfiltered effluent BOD** from firstorder equation – see →
- 5. Calculate <u>filtered</u> effluent BOD ( = 0.3 × unfiltered BOD)







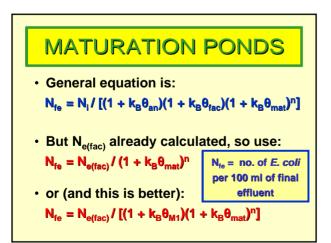


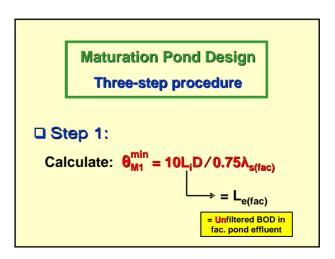
- ≤10<sup>5</sup> *E. coli* per 100 ml, and
- ≤1 egg per litre

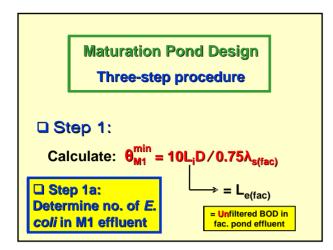
### 1. E. coli removal

- General equation is:  $N_e = N_i / [(1 + k_B \theta_{an})(1 + k_B \theta_{fac})(1 + k_B \theta_{mat})^n]$
- But as yet no maturation ponds, so:  $N_{e(fac)} = N_{I} / [(1 + k_{B}\theta_{an})(1 + k_{B}\theta_{fac})]$ where  $k_{B} = 2.6(1.19)^{T-20}$

# 2. Egg removal


- Design equation is: R (%) = 100[1 - 0.41exp(-0.41θ + 0.0085θ<sup>2</sup>)], but use: r = [1 - 0.41exp(-0.41θ + 0.0085θ<sup>2</sup>)]
- Apply first to anaerobic pond ( $\theta_a$ ), then to facultative pond ( $\theta_f$ ); then:


□ No. of eggs in fac. pond effluent = [(No. in raw wastewater) ×  $(1 - r_a) \times (1 - r_f)$ ]


## **MATURATION PONDS**

- General equation is:  $N_{fe} = N_i / [(1 + k_B \theta_{an})(1 + k_B \theta_{fac})(1 + k_B \theta_{mat})^n]$
- But  $N_{e(fac)}$  already calculated, so use:  $N_{fe} = N_{e(fac)} / (1 + k_B \theta_{mat})^n$   $N_{fe} = no. of$ *E. coli*

per 100 ml of final effluent

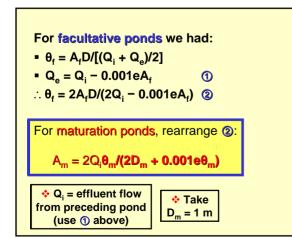


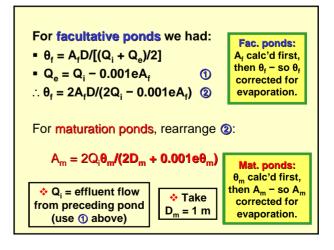






**Step 3**:


Choose most appropriate combination\* of  $\theta_{mat}$  and n, **including**  $\theta_{mat}^{min}$  and  $\tilde{n}$ 


\* ie, the one for which their product is a MINIMUM, as this gives the least land area requirement

#### □ Step 3:

Choose most appropriate combination\* of  $\theta_{mat}$  and n, including  $\theta_{mat}^{min}$  and  $\tilde{n}$ \* ie, the one for which their product is a MINIMUM, as this gives the least land area requirement

Now calculate the maturation pond areas taking evaporation into account ....



