SIMPLIFIED SEWERAGE

Part 3 of 4

wit an an ^I mi *	th d/D = 0.2 (ie, k _a = 0.1118 and k _r = 0.1206) and ρ = 1000 kg/m ³ , g = 9.81 m/s ² and n = 0.013, and rearranging: $\tau_{min} = 2.33 \times 10^{-4} (\tau_{min})^{16/13}q^{-6/13}$ $\tau_{min} = 1$ Pa (design value) $\tau_{min} = 2.33 \times 10^{-4}q^{-6/13}$ [q in m ³ /sec] $I_{min} = 5.64 \times 10^{-3}q^{-6/13}$ [q in litres/sec]	value of 0.1118 and a k_r value of 0.1206, and with $\rho = 1000 \text{ kg/m}^3$, $g = 9.81 \text{ m/s}^2$ and $n = 0.013$, and rearranging, we get this equation for I_{\min} : $I_{\min} = 2.33 \times 10^{-4} \tau_{\min}^{16/13} q^{-6/13}$ Our design value for τ_{\min} is 1 Pascal, so: $I_{\min} = 2.33 \times 10^{-4} q^{-6/13}$ where q is in m ³ /s. For q in l/s: $I_{\min} = 5.64 \times 10^{-3} q^{-6/13}$
5.	Selection of sewer diameter • same as with min. self-cleansing velocity approach, <u>but with</u> I _{min} = 5.64 × 10 ⁻³ q ^{-6/13} [q in litres/sec] IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	We select the sewer diameter in exactly the same way as we did when we used the minimum self-cleansing velocity app- roach, but we use the expression $I_{\min} =$ $5.64 \times 10^{-3}q^{-6/13}$ (where q is in l/s) because this is the equation based on a minimum tractive tension of 1 Pascal.
6.	COMPARISION OF DESIGN APPROACHES For $q = q_{min} = 1.5$ l/s: Min. velocity = 0.5 m/s: 1 in 131 Min. tractive tension = 1 Pa: 1 in 214 o min. tractive tension approach much more economical – now considerable experience in Brazil with $\tau_{min} = 1$ Pa.	What we need to do now is to compare the two design approaches, one based on the minimum self-cleansing velocity of 0.5 m/s and the other on the minimum tractive tension of 1 Pascal; and we will do this for the minimum peak flow of 1.5 l/s. For a minimum velocity of 0.5 m/s the minimum gradient is 1 in 131, but for the minimum gradient is 1 in 214, which is flatter and therefore much more economical; and there is now considerable experience in Brazil using this value of $\tau_{min} = 1$ Pascal.