


SETTLED SEWERAGE

Part 1 of 3

1.	<image/>	This programme is about settled sewerage , sometimes called small-bore sewerage,
2.	SETTLED SEWERAGE "If there is not enough fall to give a self- cleansing velocity in the main drain, it will sometimes be possible to put in a septic tank at the head of it. The effluent from a septic tank, being free from any solids capable of choking a drain, may be safely laid with a merely nominal fall." The Work of the Sanitary Engineer (Martin, 1935):	and the first reference of this is in a book published in England in 1935, which said: "If there is not enough fall to give a self- cleansing velocity in the main drain, it will sometimes be possible to put in a septic tank at the head of it, the effluent from a septic tank being free from any solids capable of choking a drain may be safely laid with a merely nominal fall."
3.	 First report of settled sewerage is Vincent, Algie & Marais (1963) (presented at the CCTA/WHO Conference in Niamey,1961) sewered aqua-privies in Northern Rhodesia (now Zambia) Then New Bussa, Nigeria, 1965–68 	The first report of an actual settled sewerage scheme was published in 1961 and this described sewered aqua-privies in what was then Northern Rhodesia, now Zambia, and this was followed in the mid-to-late 1960s by a scheme in New Bussa in Nigeria.
4.	Sewered aqua-privies in Northem Rhodesia First system installed in 1960 at Kafue Flats, 50 km south of Lusaka (site gradient: 1 in 2000): • settled sewers designed for self-cleansing velocity of 0.3 m/s • 100 mm diameter sewers laid at a gradient of 1 in 200 • wastewater treated initially in a series of waste stabilization ponds	The sewered aqua privies in Northern Rhodesia were first installed in 1960 in Kafue Flats, about 50 km south of Lusaka; and the site gradient was very flat: 1 in 2000. This was the first sewered aqua-privy system, and the settled sewers were designed for a self-cleansing velocity of 0.3 m/s and the scheme used 100 mm diameter sewers laid at a gradient of 1 in 200, and the wastewater was treated, at least initially, in a series of waste stabilization ponds.

17.	When the sewer is flowing just full: r = R and R is given by R = $(\pi D^2/4)/\pi D = D/4$ Always be very careful with unitsR = $(\pi D^2/4)/\pi D = D/4$ with units	The basic design concept is that the value of Q given by this equation has to be <i>greater</i> than the estimated peak flow in the section of sewer we are designing. If not, then we have to use the next larger available pipe diameter.	
18.	 Inflective Gradient Design Method (USA) sewer profile closely follows ground profile flow conditions change as required from open channel flow to pressure flow, and back to open channel flow self-cleansing velocity not required as sewer only conveys settled wastewater 	Workers in the United States developed for settled sewerage the inflected gradient design approach. In this design procedure the sewer profile closely follows the ground profile so that flow conditions change as required from open channel flow to pressure flow and back to open channel flow, and so on. This method was the first method to realise that a self- cleansing velocity in a settled sewer was not required as the sewer only conveys settled wastewater, as all the solids have been retained in the interceptor tank.	
19.	 The design <i>must</i> ensure that: (1) an overall fall exists across the system and (2) the hydraulic grade line does not rise above level of outlet invert of any interceptor tank otherwise wastewater would flow from the sewer to the interceptor tank 	There are two things that the design has to ensure. Firstly, that there is an overall fall across the system and, secondly, that the hydraulic grade does not rise above the level of the invert of the outlet of any interceptor tank; otherwise wastewater would flow from the sewer back into the interceptor tank and cause local flooding	
20.	 CRITICAL POINTS establish maximum sewer elevation at: high points where flow changes from open channel to pressure flow points at end of long flat sections 	In relation to the second point, we have to consider critical points where we establish the maximum sewer elevation, and the critical points are high points where the flow changes from open channel flow to pressure flow, and points at the end of long, flat sections.	
	© Duncan Mara, 2006		